
The Counterfeit Conundrum: Can Code Language
Models Grasp the Nuances of Their Incorrect

Generations?

Alex Gu gua@mit.edu
MIT CSAIL
Wen-Ding Li⋆ wl678@cornell.edu
Cornell University
Naman Jain⋆ naman jain@berkeley.edu
University of California, Berkeley
Theo X. Olausson⋆ theoxo@csail.mit.edu
MIT CSAIL
Celine Lee⋆ cl923@cornell.edu
Cornell University
Koushik Sen ksen@berkeley.edu
University of California, Berkeley
Armando Solar-Lezama asolar@csail.mit.edu
MIT CSAIL

Abstract

While language models are increasingly more proficient at code generation, they still
frequently generate incorrect programs. Many of these programs are obviously wrong,
but others are more subtle and pass weaker correctness checks such as being able to
compile. In this work, we focus on these counterfeit samples: programs sampled from
a language model that 1) have a high enough log-probability to be generated at a
moderate temperature and 2) pass weak correctness checks. Overall, we discover that
most models have a very shallow understanding of counterfeits through three clear
failure modes. First, models mistakenly classify them as correct. Second, models are
worse at reasoning about the execution behaviour of counterfeits and often predict their
execution results as if they were correct. Third, when asking models to fix counterfeits,
the likelihood of a model successfully repairing a counterfeit is often even lower than
that of sampling a correct program from scratch. Counterfeits also have very unexpected
properties: first, counterfeit programs for problems that are easier for a model to solve
are not necessarily easier to detect and only slightly easier to execute and repair. Second,
counterfeits from a given model are just as confusing to the model itself as they are to
other models. Finally, both strong and weak models are able to generate counterfeit
samples that equally challenge all models. In light of our findings, we recommend that
care and caution be taken when relying on models to understand their own samples,
especially when no external feedback is incorporated.

⋆ Equal contribution, author order determined via random.shuffle

1

1 Introduction

In the past year, language models such as CodeLlama (Roziere et al., 2023), DeepSeek-Coder (Guo
et al., 2024), and GPT-4 (OpenAI, 2023) have demonstrated great advances in code generation.
Their success has primarily been due to their strong code generation abilities, as measured by
benchmarks such as HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) as well as their
usefulness in general-purpose code writing. While these models are able to produce correct code
for impressively complex specifications, they just as often produce incorrect code.

Some of these incorrect programs contain egregious mistakes, but others fail in more subtle ways.
We focus our attention towards the second group, which we call counterfeit samples. We define
a counterfeit sample to be a program sampled from a code language model which is 1) good
enough to be generated by the language model at a moderate temperature, 2) are incorrect, and 3)
pass weak but nontrivial correctness checks. In this work, we study the extent to which models
can understand these counterfeit programs. This final criterion of passing nontrivial correctness
checks distinguishes programs with more subtle errors from those that trivially fail and are likely
uninteresting. In Fig. 1, we show an example of an incorrect, counterfeit, and correct program.
Because we use relatively weak correctness checks, many counterfeit programs can still be easily
detected as wrong by a human.

Given a list of distinct strings, check if any two have the same length.
>>> same_length([“aa”, “b”, “ccc”, “dd”])
True
>>> same_length([“a”, “bb”, “ccc”])
False

Correct
def same_length(s):
 l = [len(i) for i in s]
 l = set(l)
 if len(s) > len(l):
 return True
 return False

Counterfeit
def same_length(s):
 if s == []: return False
 for a, b in zip(s, s):
 if len(a) == len(b):
 return True
 return False

Incorrect
def same_length(s):
 # check the length of s.
 if len(s) == 7:
 return s * s
 else:
 return s + s

Figure 1: Example of a problem specification with incorrect, counterfeit, and correct programs.

We provide empirical evidence that code language models have a shallow understanding of these
counterfeit samples (Sec. 3) via three evaluations: correctness checking, execution prediction, and
program repair. For correctness checking, the model is asked to assess whether a short piece
of code correctly implements a natural language specification (sometimes with test cases). For
execution prediction, the model is given a program-input pair and asked to predict the output
of executing the program on the given input. For fairness, we ensure the programs are generally
short and that execution does not require complex calculations. For repair, the model is given the
counterfeit program alongside its original specification and is asked to correct it. First, we find
that models frequently misjudge counterfeit samples as correct. Second, models are much worse
at reasoning about the execution of counterfeits than their correct companions, often executing
counterfeits as if their semantics matched those of a correct program. Third, models falter at repair:
the likelihood of a model successfully repairing a counterfeit example is often even lower than that
of generating a correct program when sampling from scratch. As a caveat, this paper focuses on
open-source models, primarily CodeLlama 34B and DeepSeek Instruct 33B. We also present limited
results on GPT-3.5 and GPT-4 which suggest that GPT-3.5 behaves similarly to the open-source

2

models while GPT-4 has a much better understanding of counterfeits. Nevertheless, we still find
that GPT-4 still exhibits some of these misunderstandings.

Through further analysis, we find that counterfeit samples have other unexpected properties (Sec.
4). We find, for example, that counterfeit samples from problems that are easier for the model
to solve are not easier to assess and only slightly easier to execute and repair, highlighting an
inconsistency between generation and understanding capabilities. We also observe that models
don’t perceive their own counterfeit samples differently from other models’ counterfeits and that
models of all capability levels are able to generate equally difficult counterfeit samples.

Overall, we find that these counterfeit samples are, in a sense, adversarial to the model: models
often struggle to assess their correctness, reason about their execution as if they were correct
programs, and repair them at a low rate. Understanding counterfeit samples is a prerequisite to
many downstream applications in which models use their own feedback to improve themselves.
Therefore, in light of our findings, we recommend exercising caution in these schemes such
as self-repair and model-based reranking of outputs, especially when no external feedback is
incorporated.

2 Experimental Setup

2.1 Generating Counterfeit Examples

We use three datasets: HumanEval, LeetCode, and ODEX (Wang et al., 2022b). HumanEval
evaluates code generation of simple natural language descriptions, LeetCode is a harder dataset
of the same flavor using programming interview practice problems, and ODEX tests knowledge
of diverse Python libraries. To generate counterfeit examples, we first sample programs from
CodeLlama (CL), DeepSeek-Coder Instruct (DS-I), and StarCoder (SC) at temperature T = 0.6.
Of the incorrect programs, we design a dataset-specific filter to remove incorrect programs that
do not pass mild correctness criteria. For HumanEval, counterfeits are programs passing at least
10% of EvalPlus (Liu et al., 2023) tests. For LeetCode, counterfeits are programs that received a
“Wrong Answer” verdict, which filters out programs that crashed during runtime or took too long
to finish. For ODEX, counterfeits are programs that can be successfully parsed by ast.parse and
are under 500 characters. In Fig. 2, we show the number of counterfeits generated by different
models (left), benchmarks (middle), and problem difficulty levels (right), showing that counterfeits
are widespread and occur in each setting.

2.2 Code Understanding Tasks

We evaluate counterfeits on the following tasks:

Correctness Checking: The goal is to check whether a model-generated Python program (either correct
or counterfeit) correctly implements a natural language (NL) specification. These specifications
often include input-output examples. We use CoT with majority voting (Wei et al., 2022; Wang
et al., 2022a) and report accuracy.

Execution Prediction: The goal is to predict the execution output of a given model-generated Python
program on a specific input. We use an execution-based metric for correctness and report pass@1,
the fraction of samples that are correct.

3

CL-7b CL-34b SC DS-6.7b DS-33b
Data Model

0

20

40

60

80

100
%

Samples (HumanEval)

Correct
Counterfeit
Incorrect

HumanEvalLeetCode ODEX
Benchmark

0

20

40

60

80

100

Samples (DS-33b)

Easy Medium Difficult
Difficulty

0

20

40

60

80

100

Samples (LeetCode)

Figure 2: Distribution of correct, counterfeit, and incorrect samples by model, benchmark, and
problem difficulty, showing their prevalence across all settings.

Repair: The goal is to repair a given incorrect model-generated counterfeit program to correctly
implement a given natural language specification. The model is not given any execution feedback
other than the fact that the program is incorrect.

All three tasks are given to the language model (LM) in a few-shot setting. For GPT-3.5 and GPT-4,
all tasks are prompted with chain-of-thought (CoT) (Wei et al., 2022). For other models, we use
CoT with majority voting (N = 10) for correctness checking but not execution prediction (we found
it did not help). For more details and full prompts, see Appendix B.

2.3 Dataset Creation

Each set of samples is curated using a single dataset (such as HumanEval) and model (such as
CodeLlama 34B). Each set is balanced and consists of 5 correct and 5 counterfeit programs for each
problem (problems that do not have enough programs are discarded). Overall, across HumanEval,
LeetCode, and ODEX, we generate 12 different sets of samples, each consisting of 360 to 1190
programs. For correctness prediction, these datasets are used directly. For execution prediction,
we randomly selected input-output examples, removing pairs that require complex arithmetic or
execution. We also remove the problem statement and example input-output pairs so the model
focuses on executing the code. For repair, we use the counterfeit samples in each set and discard
the correct samples. More details and examples can be found in Appendix A.

3 Can code language models understand counterfeit samples?

In this section, we argue that models struggle to understand counterfeit samples. Due to space
limitations, we only highlight a subset of datasets and models in this plot, deferring the complete
set of results to Appendix C.

4

3.1 Correctness Checking

We begin by examining whether language models can correctly identify whether a program is
correct or counterfeit given the natural language specification. In Fig. 3, we plot the accuracy
of CodeLlama 34B, DeepSeek-Coder 33B, GPT-3.5, and GPT-4 on balanced datasets of correct
and counterfeit programs for HumanEval and ODEX. For the first three models, the blue bars
indicate that correctness checking accuracy is at about 60% for both of these datasets, which is only
slightly better than the 50% random-guessing baseline. This indicates that models generally fail to
distinguish between correct and counterfeit samples. In addition, by comparing the green and red
bars, we observe that the performance of these three models on correct samples is much higher
than their performance on counterfeit samples, showing that models are biased towards thinking
that counterfeit samples are actually correct. On the other hand, GPT-4 is much better (but not
perfect) at this task with an accuracy at around 80% for both datasets. We also observe that in
contrast with the rest of the models (including those not shown here, see Fig. 14), GPT-4 is not
biased towards predicting that these samples are correct. However, GPT-4 still falters around 20%
of the time, and we qualitatively analyze some of these remaining GPT-4 failures in Sec. 5.

CL-34b DS-33b GPT-3.5 GPT-4
Eval Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

HumanEval, CL-7b
Overall Correct Counterfeit

(a) HumanEval (CL-7B)

CL-34b DS-33b GPT-3.5 GPT-4
Eval Model

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)

ODEX, DS-33b
Overall Correct Counterfeit

(b) ODEX (DS-33B)

Figure 3: Models other than GPT-4 struggle to classify samples as correct or counterfeit and are
much better at assessing the correctness of correct samples than counterfeit samples.

3.2 Execution Prediction

Next, we assess the ability of models to predict the execution behavior of counterfeit samples. In
Fig. 4, we plot the execution accuracy of the previous four models on two datasets, LeetCode
generated by DS-33B and HumanEval generated by CL-34B.

In this task, each sample includes a program (correct or counterfeit) P and an input I. The accuracy
of the correct samples are shown in the green bars. Because counterfeit programs still pass a subset
of tests, we distinguish their execution samples into two groups. We call samples where P passes
test I test-passing counterfeit samples and the rest as test-failing counterfeit samples. The execution
prediction accuracies of these samples are shown in blue and red, respectively. In purple, we show
the proportion of test-failing counterfeit samples where the model actually predicted the output of

5

the correct program. Note that samples counting towards the red accuracy are disjoint from those
counting towards the purple accuracy.

Overall, we observe that models have a difficult time distinguishing the semantics of a counterfeit
program from their correct counterparts, suggesting they may have a shallow understanding of
program semantics. By comparing the green and blue bars with the red bar, we see that models
fail much more at executing counterfeit programs when the semantics are incorrect. The purple
bars provide further evidence of this: models other than GPT-4 frequently execute counterfeit
programs as if they had the semantics of a correct program, sometimes even more often than their
true semantics (red). For GPT-4, the effect is much less pronounced but still present, as GPT-4
still performs much better on correct and test-passing counterfeits than test-failing counterfeits.
Despite having such a high performance, it was still confused for a sizable number of test-failing
counterfeit samples, predicted the output of the correct program rather than the correct execution
result. Overall, as models only see the programs and not the problem statements, this suggests that
they may be hallucinating the semantics of incorrect programs. This provides further evidence that
models are poor at distinguishing correct programs from counterfeit programs.

CL-34b DS-33b GPT-3.5 GPT-4
Model

0

20

40

60

80

100

Ac
cu

ra
cy

LeetCode, DS-33b
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(a) LeetCode (DS-33B)

CL-34b DS-33b GPT-3.5 GPT-4
Model

0

20

40

60

80

100

Ac
cu

ra
cy

HumanEval, CL-34b
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(b) HumanEval (CL-34B)

Figure 4: Models are much better at executing correct samples than counterfeit samples, and even
often execute counterfeit samples as if they were correct.

3.3 Repair

Finally, we probe the model’s ability to repair the counterfeit samples it has generated. Although
this task may appear to simply boil down to code generation, prior work has highlighted that code
understanding forms an integral part of the repair pipeline since achieving good performance
hinges on the model’s (in)ability to generate accurate textual explanations of what is wrong with
the code Olausson et al. (2024); as such, self-repair may give us further insight into the model’s
capabilities.

6

Prior work has shown that when given information about which unit test failed, many models
are capable of repairing incorrect Python programs at rates that exceed their baseline pass rates
Chen et al. (2024a); Olausson et al. (2024). In this section, we press the model even harder by not
giving any execution signal whatsoever, instead simply informing it that the program did not pass;
thus, successful repair depends entirely on the model’s own ability to understand the program
and its relationship to the specification. Importantly, the success rate of repair must be compared
to the baseline pass@1 rate, since a sample can also be “repaired” simply by drawing another
unconditional sample from the model. Details of the experimental setting, and the prompt used for
this task, are given in Sec. B.2-B.3.

Fig. 5 shows the results for CodeLlama 34B1 and DeepSeek 33B when repairing their own programs
on HumanEval and LeetCode (respectively). The full set of results are in Appendix C.3. In these
figures, each point is the mean success rate of repair for a particular problem; points above the
line y = x (which corresponds to a pass rate equal to that of the simple resampling strategy)
thus indicate successful repair, while points below it indicate that the model could not reliably
debug and repair the programs. We note that although repair appears somewhat successful with
DeepSeek-33B on HumanEval (Fig.), beating out the baseline for 35/81 problems, in all other
settings a strong majority of the points lie below the line y = x. In other words, the success
rate of repair is—for most tasks—significantly below what one would achieve with the simple
resampling strategy. This evidence shows that models cannot reliably repair counterfeit samples,
which suggests that they could not understand why these programs were deemed incorrect.

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

LeetCode, DS-I-33b
re-sampling (y = x)
repair resampling (41/46)
repair > resampling (5/46)

(a) LeetCode (DS-I-33B)

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

HumanEval, CL-I-34b
re-sampling (y = x)
repair resampling (68/82)
repair > resampling (14/82)

(b) HumanEval (CL-I-34B)

Figure 5: In the absence of execution information, we find that repair underperforms resampling
in almost all settings. Samples above the y = x resampling baseline have been coloured in blue
for clarity. See Appendix C.3 for full results. Vertical lines indicate 95% confidence intervals over
repair samples.

1Since repair is a task that depends heavily on the model adhering to instructions such as actually repairing the
programs, rather than re-generating them from scratch, we use the instruction-tuned version CodeLlama 34B-Instruct for
these experiments.

7

4 Do counterfeit samples from different models or problems
differ significantly?

4.1 Is it easier for models to understand counterfeit samples from problems it
finds easier?

Intuitively, if a given programming problem is easy for a model to solve (meaning it has a high
pass@1 rate), we might believe models understand how to solve that problem. If that is the case,
then models should be able to better understand both correct and counterfeit samples for that
problem. To test if this is true, we bucket problem difficulties into easy, medium, and hard by a
model’s pass@1 on that problem. We then calculate the average correctness checking, verification,
and repair accuracy for each of the tasks for each problem difficulty bucket. In Fig. 6, we show
a subset of these results on HumanEval; full results for verification and execution are given in
Sec D.1 and D.2.

Easy Medium Difficult
0

50

100

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

CL
-7

b
Pr

og
ra

m
s

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult
0

50

100

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

SC
 P

ro
gr

am
s

CL-34b

Easy Medium Difficult

DS-33b

Correctness Checking

Problem Difficulty

(a) Correctness Checking

Easy Medium Difficult
0

50

100

Ex
ec

ut
io

n
Ac

cu
ra

cy
CL

-3
4b

 P
ro

gr
am

s

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult
0

50

100

Ex
ec

ut
io

n
Ac

cu
ra

cy
CL

-7
b

Pr
og

ra
m

s

CL-7b

Easy Medium Difficult

DS-33b

Execution

Problem Difficulty

(b) Execution

Easy Medium Difficult
0

25

50

75

100

Re
pa

ir
Ac

cu
ra

cy
CL

-I-
34

b
Pr

og
ra

m
s

CL-I-34b

Easy Medium Difficult

DS-I-33b

Easy Medium Difficult
0

25

50

75

100

Re
pa

ir
Ac

cu
ra

cy
DS

-I-
33

b
Pr

og
ra

m
s

CL-I-34b

Easy Medium Difficult

DS-I-33b

Repair

Problem Difficulty

(c) Repair

Figure 6: Mean accuracy of correctness checking, execution, and repair on HumanEval (error bars
are 1 std). A problem’s difficulty is determined by the pass@1 of the evaluation model. In general,
correctness checking accuracy is uncorrelated with problem difficulty, while both execution and
repair accuracies are only very weakly correlated.

Surprisingly, we find that 1) correctness checking accuracies are relatively uncorrelated with
problem difficulty, while 2) execution ability and the success rate of repair exhibit a modest
amount of correlation with problem difficulty. We find that these trends are generally robust across
HumanEval, LeetCode, and ODEX, although the amount of correlation exhibited in the repair task
varies (but is, at best, modest).

To get a more precise measurement of these relationships, we calculated the Pearson correlation
between generation performance and each of correctness checking, execution prediction, and repair
performance across problems. The resulting histogram showing the distribution of correlations for
each task is shown in Fig. 7.

8

0.2 0.0 0.2 0.4 0.6
Correlation

Correlation between Generation and Each Task
Correctness
Execution
Repair

Figure 7: Correlation between generation and each of our three tasks

4.2 Do models perceive their own samples differently?

For a given model, its counterfeit samples had a high enough log-likelihood to be generated by
the model, so one may hypothesize that models might have a harder time than other models at
distinguishing their own counterfeit samples. In Fig. 8, we plot heatmaps showing the performance
of various models on datasets generated by other models for the correctness checking task (left)
and execution prediction task for HumanEval (right). For both tasks, the relative performance of
different models is similar across datasets, we find no evidence that models falter more on their
own samples. This suggests that counterfeit samples may be general: those from one model are
generally difficult for other models to understand as well.

CL-7b CL-34b DS-33b SC
Evaluation Model

CL
-7

b
CL

-3
4b

DS
-3

3b
SC

Da
ta

 M
od

el

55% 60% 65% 49%

56% 58% 65% 50%

56% 61% 64% 49%

55% 56% 62% 50%

(a) Correctness (ODEX)

CL-7b CL-34b DS-6.7b DS-33b SC
Evaluation Model

CL
-7

b
CL

-3
4b

DS
-6

.7
b

DS
-3

3b
SC

Da
ta

 M
od

el

49% 61% 61% 67% 51%

48% 63% 60% 68% 51%

41% 53% 52% 60% 41%

47% 49% 55% 66% 48%

46% 58% 57% 65% 46%

(b) Execution (HumanEval)

Figure 8: Heatmap of accuracies for correctness checking and execution prediction. Models do not
seem to perceive their own generations differently from those of other models.

9

4.3 Do stronger models generate harder counterfeit samples?

One might also expect that counterfeit samples of stronger models are harder to verify than those
of weaker models, as stronger models are less likely to generate obvious mistakes. In Fig. 9, we
compare the average scores of two tasks on counterfeit samples for datasets generated by stronger
(DS-33B, CL-34B) and weaker (CL-7B, SC) models. Note that this is the same as Fig. 8 with each
row aggregated and filtered to only include counterfeit samples. Since there does not seem to be
a significant difference between the difficulties, models of all strengths can be used to generate
counterfeit samples that are challenging for models to understand.

0 10 20 30 40 50
Avg Accuracy (%)

SC

CL-34b

CL-7b

DS-33b

36.1%

39.3%

39.4%

41.8%

Correctness (ODEX)

(a) Correctness (ODEX)

0 10 20 30 40 50 60
Avg Accuracy (%)

DS-6.7b

SC

DS-33b

CL-7b

CL-34b

45.0%

50.0%

51.6%

53.3%

54.6%

Execution (HumanEval)

(b) Execution (HumanEval)

Figure 9: Accuracy of correctness and execution tasks on counterfeit samples. Both strong and
weak models are able to generate difficult counterfeit samples.

5 Qualitative Analysis

In general, most counterfeit programs fall into one of three broad categories: (1) error in algorithmic
design or implementation, (2) incorrectly understanding or completely ignoring details in the
specification, (3) failing to address corner cases in the input space. Examples of each are provided
in Appendix E.

5.1 Failure Modes on Correctness Checking

In Sec. 3, we saw that GPT-4 is significantly more performant than other models at both correctness
checking and execution prediction. Yet, we still find a significant fraction of failures. In this section,
we take a closer look at the performance of GPT-3.5 and GPT-4 to understand where today’s
cutting-edge models still fall short. Through a manual inspection of examples, we uncover three
main failure modes for verifying the correctness of counterfeit samples. Here, we present one
example of each, deferring more to Appendix F. For conciseness and readability, some of the
problem statements have been altered from their original form.

1) The model does not catch misunderstood or ignored details in the specification: Sometimes,
the verification model doesn’t catch important specification details that are misunderstood or
ignored by the counterfeit sample.

10

For example, GPT-3.5 fails to find the reasoning error in the below counterfeit sample because it
appears to have misunderstood the definition of “corresponding closing bracket”. However, when
asked to implement a function for the specification, it correctly understands that the corresponding
closing bracket must come after the opening bracket, highlighting an inconsistency between
generation and correctness checking.

def correct_bracketing(brackets: str):

""" brackets is a string of "<" and ">". return True if every opening bracket has a corresponding

↪→ closing bracket.

>>> correct_bracketing("<<><>>")

True

>>> correct_bracketing("><<>")

False

"""

opening = brackets.count("<")

closing = brackets.count(">")

return opening == closing

GPT−3.5: The code appears to be correct. It counts the number of opening brackets (”<”) and closing brackets (”>”) in the input
↪→ string and returns True if the counts are equal, indicating that every opening bracket has a corresponding closing bracket.

2) The model fails to catch subtle implementation mistakes: Often, counterfeit samples follow
a generally correct algorithm design but contain a subtle implementation mistake that models
do not catch. Below, if num = target check should consider whether the remaining digits in
square[index:] sum to 0 for this implementation to be correct, but GPT-4 misses this subtle detail.

"""Given a positive integer n, return the punishment number of n, defined as the sum of the squares of

↪→ all integers i such that 1) 1 <= i <= n and 2) The decimal representation of i * i can be

↪→ partitioned into contiguous substrings such that the sum of the integer values of these

↪→ substrings equals i."""

def punishmentNumber(n: int) -> int:

def check(num, target, index, square):

if num == target:

return True

if index == len(square):

return False

cur = 0

for i in range(index, len(square)):

cur = cur * 10 + int(square[i])

if cur > target:

break

if check(num + cur, target, i + 1, square):

return True

return False

res = 0

for i in range(1, n + 1):

square = str(i * i)

if check(0, i, 0, square):

res += i * i

return res

GPT-4 CoT verdict: Correct

3) The model forgives an identified error: A third failure mode occurs when the model correctly
reasons that the code is incorrect, but then makes up a justification for the error and judges the
code as correct. In the counterfeit sample below, the code fails to consider capital consonants.

11

While GPT-4 correctly identifies this issue, it proceeds to state that assuming that concern is not a
real issue, the code is correct. However, the implementation fails one of the examples.

def select_words(s, n):

"""Given a string s and a natural number n, return a list of all words from string s that contain

↪→ exactly n consonants, in the order these words appear in the string s.

Examples:

select_words("Mary had a little lamb", 4) ==> ["little"]

select_words("Mary had a little lamb", 3) ==> ["Mary", "lamb"]

"""

convert string to list

word_list = s.split()

consonants = "bcdfghjklmnpqrstvwxyz"

filter out all words that contain n consonants

return [word for word in word_list if sum(c in consonants for c in word) == n]

GPT−4: ... However, there is a potential issue with case sensitivity. The ‘consonants‘ string only contains lowercase consonants, and
↪→ the program does not explicitly convert the input string ‘s‘ or the words to lowercase before checking if a character is a
↪→ consonant. This means that if the input string contains uppercase letters, the program might not count them as consonants,
↪→ leading to incorrect results. [...] the program correctly implements the functionality described in the docstring under the
↪→ assumption that the input string contains only lowercase letters or that case sensitivity is not a concern...

Execution Prediction: To conclude this section, we highlight an error in execution prediction. In
the example below, even though the statement if ")" in brackets is clearly true, GPT-4 is biased
by the intended functionality of the program and does not follow its actual execution semantics.
More examples can be found in Appendix F.2.

def correct_bracketing(brackets: str):

if ")" in brackets:

return False

open_brackets = 0

for bracket in brackets:

if bracket == "(":

open_brackets += 1

else:

open_brackets -= 1

if open_brackets < 0:

return False

return open_brackets == 0

assert correct_bracketing(’()’) == ??

Correct Answer: False

GPT−4 Execution: [...] 2. The function is called with the argument ”()”.
3. The first if condition checks if ”)” is in brackets. Since it is, but only after ”(”, this condition does not lead to a return of False at
↪→ this point [...]

6 Related Work

Language models as judges and verifiers LLMs are increasingly explored for their potential in
evaluation and verification tasks in various domains. In open-ended question answering, Zheng
et al. (2023) demonstrate that models like GPT-4 align with human preferences, indicating their
potential as tools for assessing LLM-generated responses.

In domains like mathematics and commonsense reasoning, various forms of automated LLM
feedback have led to improved reasoning abilities (Cobbe et al., 2021; Zhou et al., 2023; Weng et al.,

12

2022; Lightman et al., 2023; Chen et al., 2023; Wang et al., 2023; Shao et al., 2024). Additionally,
Studies like (Schneider et al., 2023; Matelsky et al., 2023) investigate LLMs as auto-graders or judges
for educators. On the other hand, Valmeekam et al. (2023); Tyen et al. (2023); Stechly et al. (2023);
Chen et al. (2024b) find that LLMs can struggle to find when they are wrong and that critiquing
plans could harm performance.

Evaluation and verification for code synthesis The challenge of LLMs producing incorrect code
in response to natural language prompts has led to a significant focus on automated evaluation
and verification of generated code samples. Various studies have demonstrated that postprocessing
the samples from LLMs can substantially enhance the accuracy of the system (Chen et al., 2022;
Ridnik et al., 2024; Key et al., 2022; Zhang et al., 2023b; Li et al., 2022; Huang et al., 2023a).

Also, Inala et al. (2022); Zhang et al. (2023d); Ni et al. (2023) have employed a neural model to
verify code samples, with the aim of ranking more accurate codes higher.

Code understanding in language models Many benchmarks evaluate aspects of code understand-
ing and code intelligence such as code summarization (Iyer et al., 2016; Hasan et al., 2021), commit
message generation (Liu et al., 2020), code comprehension (Singhal et al., 2024), clone detection (Lu
et al., 2021), code question answering (Sahu et al., 2022), and code explaining (Muennighoff et al.,
2023). Neural-based code execution has been studied in (Austin et al., 2021; Nye et al., 2021; Gu
et al., 2024; La Malfa et al., 2024), and code repair has been studied in (Madaan et al., 2023; Chen
et al., 2024a; Zhang et al., 2023a; Olausson et al., 2024), and Liu et al. (2024) examine a suite of code
reasoning benchmarks.

A few controlled studies highlight the extent to which language models understand code. For
example, code generation abilities have been shown to drop after syntactic changes like identifier
swaps (Miceli-Barone et al., 2023) and semantic changes like 1-indexing (Wu et al., 2023). Dinh
et al. (2024) show that models fail at completing code with bugs. Jin and Rinard (2023) provide
evidence that LMs can learn meaningful representations when trained on programs, Zhang et al.
(2023c) explore the behavior of transformers to simulate recursive functions, and Min et al. (2023)
discover that code language models are inconsistent on various coding tasks.

Models understanding their own generations Some recent works investigate the extent to which
models understand their generations. Huang et al. (2023b); Chen et al. (2024a); Tyen et al. (2023);
Olausson et al. (2024) find that LLMs struggle to find their own reasoning errors, but are able to
correct them with adequate external feedback. Singhal et al. (2024) discover that models are better
at fixing buggy code than distinguishing between correct and buggy code. Relevant to our work,
West et al. (2023) and Oh et al. (2024) argue that generative capability may not be contingent on
understanding capability in textual domains.

7 Conclusion

In this work, we bring attention to the counterfeit samples of a code language model: incorrect
programs that a model thinks are correct and can pass surface-level correctness checks. We observe
that in a sense, these counterfeit samples are adversarial to the model: models often cannot assess
their correctness, reason about their execution, and struggle to repair them. Compared to other

13

models, GPT-4 may be different from other evaluated models in this regard, in that they are much
less susceptible to the traps we observe on counterfeit samples from other models.

While we operate in the domain of code, where it is simple to precisely check a model’s under-
standing, we suspect that the same phenomena occur more generally in language models, which is
consistent with the findings from West et al. (2023). Because models being able to understand their
own counterfeit samples is a prerequisite to strong self-repair and self-verification schemes, we
recommend that others be critical and careful in light of our findings.

8 Limitations

We identify a few limitations below:

Vague labels for HumanEval samples: We find that HumanEval specifications can often be vague
with the inputs and outputs that are tested on. Therefore, some programs can be argued to be
either correct or counterfeit. When manually inspecting programs and their scores, we find that
base tests are too weak while EvalPlus tests are too strong. Therefore, for correctness, we use
the criteria that the program must pass all base samples and at least 95% of EvalPlus samples.
However, this only affects a small fraction of samples and we do not believe changes any of our
main claims (which are also supported by LeetCode and ODEX).

Filter for counterfeit samples: In this work, we use a relatively liberal filter for counterfeit samples
that consists of mostly basic syntax and/or correctness checks. While we believe our results would
hold for slight alterations of our filter, we do not assess this.

Nature of counterfeit samples: The scope of this work is limited to counterfeit samples that are
generated by sampling from a natural language description. It is unclear how these samples differ
from human-written incorrect samples or samples constructed in a different way, for example by
synthetically injecting bugs into correct samples as in HumanEvalFix (Muennighoff et al., 2023).

Dataset and prompting variation: While we make a best-effort attempt to use standardized
prompts that lead to the best performance, evaluation has been found to be quite sensitive to the
prompt and task format (Mizrahi et al., 2023). In addition, there is variation across the datasets
generated by various models. We try to mitigate this by showcasing that our conclusions remain
robust across a variety of datasets and models.

Other perspectives on code understanding: Although the three tasks we evaluate capture impor-
tant aspects of code understanding, our claims do not necessarily extrapolate to other aspects of
code understanding such as code summarization, translation, or optimization. We believe that
other dimensions of code understanding are equally important and encourage future evaluation
beyond the tasks we present here.

Limited results for GPT-3.5 and GPT-4: All our counterfeit samples are generated from CodeLlama,
DeepSeekInstruct, and StarCoder, so it is unknown whether the same insights apply to GPT-3.5
and GPT-4 counterfeits. In addition, due to budget constraints, we only evaluate these two models
on a limited subset of our counterfeit datasets, decreasing the statistical significance of our results
on these models.

14

9 Acknowledgements

In alphabetical order, we thank Ansong Ni, Dylan Zhang, Federico Cassano, and Terry Yue Zhao
for feedback during various stages of the project.

A. Gu is supported by the National Science Foundation (NSF) Graduate Research Fellowship under
Grant No. 2141064. N. Jain is supported by NSF grants CCF:1900968, CCF:1908870, and by SKY Lab
industrial sponsors and affiliates. T.X. Olausson is supported by the Defense Advanced Research
Projects Agency (DARPA) under the ASKEM program, award HR00112220042. A. Solar-Lezama is
supported by the National Science Foundation (NSF) and Intel Corporation through NSF Grant
CCF:2217064.

References

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021. (Cited on pg. 2, 13)

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022. (Cited
on pg. 13)

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021. (Cited on pg. 2, 20)

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash,
Charles Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large language
model generation. arXiv preprint arXiv:2311.17311, 2023. (Cited on pg. 13)

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. In International Conference on Learning Representations (ICLR), 2024a. (Cited on pg. 7,
13)

Ziru Chen, Michael White, Raymond Mooney, Ali Payani, Yu Su, and Huan Sun. When is tree
search useful for llm planning? it depends on the discriminator. arXiv preprint arXiv:2402.10890,
2024b. (Cited on pg. 13)

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021. (Cited on pg. 12)

Tuan Dinh, Jinman Zhao, Samson Tan, Renato Negrinho, Leonard Lausen, Sheng Zha, and George
Karypis. Large language models of code fail at completing code with potential bugs. Advances in
Neural Information Processing Systems, 36, 2024. (Cited on pg. 13)

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. CRUXEval: A Benchmark for Code Reasoning, Understanding and Execution. arXiv
preprint arXiv:2401.03065, 2024. (Cited on pg. 13, 22, 26, 27)

15

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024. (Cited on pg. 2, 25)

Masum Hasan, Tanveer Muttaqueen, Abdullah Al Ishtiaq, Kazi Sajeed Mehrab, Md Mahim Anjum
Haque, Tahmid Hasan, Wasi Uddin Ahmad, Anindya Iqbal, and Rifat Shahriyar. Codesc: A large
code-description parallel dataset. arXiv preprint arXiv:2105.14220, 2021. (Cited on pg. 13)

Baizhou Huang, Shuai Lu, Weizhu Chen, Xiaojun Wan, and Nan Duan. Enhancing large language
models in coding through multi-perspective self-consistency. arXiv preprint arXiv:2309.17272,
2023a. (Cited on pg. 13)

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023b. (Cited on pg. 13)

Jeevana Priya Inala, Chenglong Wang, Mei Yang, Andres Codas, Mark Encarnación, Shuvendu
Lahiri, Madanlal Musuvathi, and Jianfeng Gao. Fault-aware neural code rankers. Advances in
Neural Information Processing Systems, 35:13419–13432, 2022. (Cited on pg. 13)

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing source
code using a neural attention model. In 54th Annual Meeting of the Association for Computational
Linguistics 2016, pages 2073–2083. Association for Computational Linguistics, 2016. (Cited on pg.
13)

Charles Jin and Martin Rinard. Evidence of meaning in language models trained on programs.
arXiv preprint arXiv:2305.11169, 2023. (Cited on pg. 13)

Darren Key, Wen-Ding Li, and Kevin Ellis. I speak, you verify: Toward trustworthy neural program
synthesis. arXiv preprint arXiv:2210.00848, 2022. (Cited on pg. 13)

Emanuele La Malfa, Christoph Weinhuber, Orazio Torre, Fangru Lin, Anthony Cohn, Nigel
Shadbolt, and Michael Wooldridge. Code simulation challenges for large language models. arXiv
preprint arXiv:2401.09074, 2024. (Cited on pg. 13)

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023. (Cited on pg. 25)

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022. (Cited on pg. 13)

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023. (Cited on pg. 13)

Changshu Liu, Shizhuo Dylan Zhang, and Reyhaneh Jabbarvand. Codemind: A framework to
challenge large language models for code reasoning, 2024. (Cited on pg. 13)

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. arXiv
preprint arXiv:2305.01210, 2023. (Cited on pg. 3, 20)

16

Shangqing Liu, Cuiyun Gao, Sen Chen, Lun Yiu Nie, and Yang Liu. Atom: Commit message
generation based on abstract syntax tree and hybrid ranking. IEEE Transactions on Software
Engineering, 48(5):1800–1817, 2020. (Cited on pg. 13)

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. arXiv preprint arXiv:2102.04664, 2021. (Cited on
pg. 13)

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023. (Cited on pg. 13)

Jordan K Matelsky, Felipe Parodi, Tony Liu, Richard D Lange, and Konrad P Kording. A large
language model-assisted education tool to provide feedback on open-ended responses. arXiv
preprint arXiv:2308.02439, 2023. (Cited on pg. 13)

Antonio Valerio Miceli-Barone, Fazl Barez, Ioannis Konstas, and Shay B Cohen. The larger they
are, the harder they fail: Language models do not recognize identifier swaps in python. arXiv
preprint arXiv:2305.15507, 2023. (Cited on pg. 13)

Marcus J Min, Yangruibo Ding, Luca Buratti, Saurabh Pujar, Gail Kaiser, Suman Jana, and Baishakhi
Ray. Beyond accuracy: Evaluating self-consistency of code large language models with identity-
chain. arXiv preprint arXiv:2310.14053, 2023. (Cited on pg. 13)

Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem Dror, Dafna Shahaf, and Gabriel Stanovsky. State
of what art? a call for multi-prompt llm evaluation. arXiv preprint arXiv:2401.00595, 2023. (Cited
on pg. 14)

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack: Instruction
tuning code large language models. arXiv preprint arXiv:2308.07124, 2023. (Cited on pg. 13, 14)

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau Yih, Sida Wang, and Xi Victoria
Lin. Lever: Learning to verify language-to-code generation with execution. In International
Conference on Machine Learning, pages 26106–26128. PMLR, 2023. (Cited on pg. 13)

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021. (Cited on pg. 13)

Juhyun Oh, Eunsu Kim, Inha Cha, and Alice Oh. The generative ai paradox on evaluation: What it
can solve, it may not evaluate. arXiv preprint arXiv:2402.06204, 2024. (Cited on pg. 13)

Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is Self-Repair a Silver Bullet for Code Generation? In International Conference on Learning
Representations (ICLR), 2024. (Cited on pg. 6, 7, 13, 26, 27)

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2023. (Cited on pg. 2)

Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From prompt
engineering to flow engineering. arXiv preprint arXiv:2401.08500, 2024. (Cited on pg. 13)

17

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023. (Cited on pg. 2, 25)

Surya Prakash Sahu, Madhurima Mandal, Shikhar Bharadwaj, Aditya Kanade, Petros Maniatis, and
Shirish Shevade. Learning to answer semantic queries over code. arXiv preprint arXiv:2209.08372,
2022. (Cited on pg. 13)

Johannes Schneider, Bernd Schenk, Christina Niklaus, and Michaelis Vlachos. Towards llm-based
autograding for short textual answers. arXiv preprint arXiv:2309.11508, 2023. (Cited on pg. 13)

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024. (Cited on pg. 13)

Manav Singhal, Tushar Aggarwal, Abhijeet Awasthi, Nagarajan Natarajan, and Aditya Kanade.
Nofuneval: Funny how code lms falter on requirements beyond functional correctness. arXiv
preprint arXiv:2401.15963, 2024. (Cited on pg. 13)

Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. Gpt-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning problems. arXiv preprint arXiv:2310.12397, 2023.
(Cited on pg. 13)

Gladys Tyen, Hassan Mansoor, Peter Chen, Tony Mak, and Victor Cărbune. Llms cannot find
reasoning errors, but can correct them! arXiv preprint arXiv:2311.08516, 2023. (Cited on pg. 13)

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language models
really improve by self-critiquing their own plans? arXiv preprint arXiv:2310.08118, 2023. (Cited
on pg. 13)

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. CoRR,
abs/2312.08935, 2023. (Cited on pg. 13)

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022a. (Cited on pg. 3, 25)

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based evaluation for
open-domain code generation. arXiv preprint arXiv:2212.10481, 2022b. (Cited on pg. 3, 20)

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022. (Cited on pg. 3, 4, 25)

Yixuan Weng, Minjun Zhu, Shizhu He, Kang Liu, and Jun Zhao. Large language models are
reasoners with self-verification. arXiv preprint arXiv:2212.09561, 2022. (Cited on pg. 12)

Peter West, Ximing Lu, Nouha Dziri, Faeze Brahman, Linjie Li, Jena D Hwang, Liwei Jiang, Jillian
Fisher, Abhilasha Ravichander, Khyathi Chandu, et al. The generative ai paradox:” what it can
create, it may not understand”. arXiv preprint arXiv:2311.00059, 2023. (Cited on pg. 13, 14)

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations
of language models through counterfactual tasks. arXiv preprint arXiv:2307.02477, 2023. (Cited
on pg. 13)

18

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. Self-edit: Fault-aware code editor for code genera-
tion. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 769–787, Toronto, Canada, July 2023a. Association for Computational
Linguistics. (Cited on pg. 13)

Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. Algo: Synthesizing
algorithmic programs with generated oracle verifiers. arXiv preprint arXiv:2305.14591, 2023b.
(Cited on pg. 13)

Shizhuo Dylan Zhang, Curt Tigges, Stella Biderman, Maxim Raginsky, and Talia Ringer. Can
transformers learn to solve problems recursively? arXiv preprint arXiv:2305.14699, 2023c. (Cited
on pg. 13)

Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike Lewis, Wen-tau Yih, Daniel Fried, and Sida
Wang. Coder reviewer reranking for code generation. In International Conference on Machine
Learning, pages 41832–41846. PMLR, 2023d. (Cited on pg. 13)

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. arXiv preprint arXiv:2306.05685, 2023. (Cited on pg. 12)

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia,
Linqi Song, Mingjie Zhan, et al. Solving challenging math word problems using gpt-4 code
interpreter with code-based self-verification. arXiv preprint arXiv:2308.07921, 2023. (Cited on pg.
12)

19

A Detailed Experimental Setup

A.1 Correct and Counterfeit Data Generation for Correctness Checking

In Table 1, we show statistics about the datasets used for correctness checking. Recall that each
dataset consists of 5 correct and 5 counterfeit samples per problem. We also show the average
pass@1 score of problems in the dataset at T = 0.6. A few examples of correct and counterfeit
samples are shown in Listings 1, 2, and 3.

Table 1: Correctness Checking Dataset Sizes

Dataset Model Pass@1 Size

HumanEval

CL-34b 42.0 850
CL-7b 36.9 870

DS-I-33B 45.1 830
StarCoder 32.9 660
DS-I-6.7B 56.7 810

LeetCode
DS-I-33B 49.4 460
DS-I-6.7B 37.3 360

ODEX

CL-34B 49.2 1070
CL-7B 52.2 1190

DS-I-33B 44.3 520
StarCoder 46.2 1060

CL-13B 50.1 1090

HumanEval: HumanEval (Chen et al., 2021) is a dataset of 164 relatively simple natural language
to programming problems in Python. We sample 200 generations at T = 0.6. We use both the
original HumanEval tests and EvalPlus tests, which are more comprehensive (Liu et al., 2023). In
order to filter out trivial solutions and keep the task interesting, we only consider a counterfeit
sample to be a program with an EvalPlus score of over 10% and manually inspect the resulting
dataset. On manual inspection, we found that EvalPlus tests can sometimes be too strong and filter
out correct solutions due to very subtle errors like precision and floating point issues, we consider
a solution as correct if it passes all the base tests and at least 95% of EvalPlus tests. Our manual
inspection shows that this is a fairer criteria for assessing program correctness.

LeetCode: LeetCode is a dataset of 130 LeetCode problems used for programming interviews. We
sample 200 generations at T = 0.6. Unlike in HumanEval, run-time and computational complexity
is an important consideration for many LeetCode problems. However, determining whether
a program can finish within the time limit can be difficult. Therefore, we consider counterfeit
programs to be those that resulted in a “Correct” or “Wrong Answer” verdict, and remove programs
that received a “Runtime Error” and “Time Limit Exceeded”.

ODEX: ODEX (Wang et al., 2022b) is an open-domain, multilingual, execution-based natural
language to code generation benchmark. We only use the English subset of 479 problems. Unlike
HumanEval and LeetCode, ODEX contains problems using a wide variety of Python library
functions such as numpy, os, and pandas. We sample 50 generations at T = 0.6. As ODEX does not
come with cleanly separated test cases, we consider a program as counterfeit if it can be parsed

20

successfully by ast.parse and have a length of under 500 characters. From manual inspection,
some of the problems in ODEX can be quite vague, making it difficult to discern if a solution is
correct or counterfeit without seeing the input-output format. To mitigate this, for ODEX only, we
include both the generated program and the assertions that is checked. This leads to a slightly easier
setting than the previous two tasks, but we find that it still poses a significant challenge for models.

Listing 1: Example of counterfeit sample for HumanEval, generated by CL-34B
def sort_even(l: list):

"""This function takes a list l and returns a list l’ such that

l’ is identical to l in the odd indicies, while its values at the even indicies are equal

to the values of the even indicies of l, but sorted.

>>> sort_even([1, 2, 3])

[1, 2, 3]

>>> sort_even([5, 6, 3, 4])

[3, 6, 5, 4]

"""

even_nums = l[::2]

even_nums.sort()

odd_nums = l[1::2]

ans = []

for i in range(len(even_nums)):

ans.append(even_nums[i])

ans.append(odd_nums[i])

return ans

Listing 2: Example of correct sample for LeetCode, generated by DS-I-33B
"""

You are given a 0-indexed permutation of n integers nums.

A permutation is called semi-ordered if the first number equals 1 and the last number equals n. You

↪→ can perform the below operation as many times as you want until you make nums a semi-ordered

↪→ permutation:

Pick two adjacent elements in nums, then swap them.

Return the minimum number of operations to make nums a semi-ordered permutation.

A permutation is a sequence of integers from 1 to n of length n containing each number exactly once.

Example 1:

Input: nums = [2,1,4,3]

Output: 2

Explanation: We can make the permutation semi-ordered using these sequence of operations:

1 - swap i = 0 and j = 1. The permutation becomes [1,2,4,3].

2 - swap i = 2 and j = 3. The permutation becomes [1,2,3,4].

It can be proved that there is no sequence of less than two operations that make nums a semi-ordered

↪→ permutation.

Example 2:

Input: nums = [2,4,1,3]

Output: 3

Explanation: We can make the permutation semi-ordered using these sequence of operations:

1 - swap i = 1 and j = 2. The permutation becomes [2,1,4,3].

2 - swap i = 0 and j = 1. The permutation becomes [1,2,4,3].

3 - swap i = 2 and j = 3. The permutation becomes [1,2,3,4].

It can be proved that there is no sequence of less than three operations that make nums a semi-ordered

↪→ permutation.

Example 3:

21

Input: nums = [1,3,4,2,5]

Output: 0

Explanation: The permutation is already a semi-ordered permutation.

Constraints:

2 <= nums.length == n <= 50

1 <= nums[i] <= 50

nums is a permutation.

"""

def semiOrderedPermutation(nums: List[int]) -> int:

n = len(nums)

min_idx = nums.index(1)

max_idx = nums.index(n)

if min_idx < max_idx:

return min_idx + n - 1 - max_idx

else:

return min_idx + n - 2 - max_idx

Listing 3: Example of counterfeit sample for ODEX, generated by DS-I-33B
def f_41861705(split_df, csv_df):

"""Create new DataFrame object by merging columns "key" of dataframes ‘split_df‘ and ‘csv_df‘ and

↪→ rename the columns from dataframes ‘split_df‘ and ‘csv_df‘ with suffix ‘_left‘ and ‘_right‘

↪→ respectively

"""

return split_df.merge(csv_df, how=’left’, left_on=’key’, right_on=’key’, suffixes=(’_left’, ’

↪→ _right’))

import pandas as pd

def check(candidate):

split_df = pd.DataFrame({’key’: [’foo’, ’bar’], ’value’: [1, 2]})

csv_df = pd.DataFrame({’key’: [’foo’, ’baz’], ’value’: [3, 4]})

result = pd.DataFrame({’key’: [’foo’], ’value_left’: [1],’value_right’: [3]})

assert all(candidate(csv_df, split_df) == result)

check(f_41861705)

A.2 Data Generation for Execution Prediction

We perform code execution experiments on HumanEval and LeetCode programs. The inputs and
outputs for these datasets are primitive Python objects (mostly int, str, bool, list). While it
is possible, we do not evaluate execution for ODEX because many of the programs involve file
modifications and cannot easily be represented. For each dataset and data-generating model,
we use the same set of programs used in the correctness checking experiment for consistency.
As of today, we cannot expect a language model to follow the execution of arbitrary Python
programs. Therefore, we ensure that the execution samples in our benchmark are reasonable by
applying a filter following the setup in (Gu et al., 2024). One key difference from their work is
that instead of using arbitrary programs, the programs we use here are seeded from a natural
language specification and are semantically meaningful. This allows us to analyze how models
behave differently when asked to reason about correct and counterfeit programs.

22

We create our dataset of samples to evaluate code execution as follows: first, we take the programs
generated for the correctness checking dataset. The docstring containing the problem statement
is stripped away to force the model to use the provided code. Second, we run the program on
the tests provided in the original problem statement and examples, which are generally simple
and concise to create a large set of model-generated programs, inputs, and outputs. Third, we
apply a compile-time and runtime based filter using Python bytecode to remove programs that
are too long, require complex arithmetic/floating point operations, and have too many steps in
the execution. The final step is a manual inspection of programs, inputs, and outputs passing the
filter to ensure that they seem reasonable. The resulting dataset sizes are shown in Table 2, and
examples are shown in Listings 4, 5.

Table 2: Execution Dataset Sizes

Dataset Model Dataset Size

HumanEval

CL-34B 1406
CL-7B 1528

DS-I-33B 1964
StarCoder 1622
DS-I-6.7B 1917

LeetCode
DS-I-33B 845
DS-I-6.7B 694

Listing 4: Example of HumanEval execution prediction example, generated by StarCoder
from typing import List

def string_xor(a: str, b: str) -> str:

assert len(a) == len(b)

res = ""

for i in range(len(a)):

if a[i] == b[i]:

res += "0"

else:

res += "1"

return res

assert string_xor(’1’, ’1’) == ??

Answer: ’0’

Listing 5: Example of LeetCode execution prediction example, generated by DS-I-6.7B
def relocateMarbles(nums: List[int], moveFrom: List[int], moveTo: List[int]) -> List[int]:

Create a dictionary to store the number of marbles at each position

marbles = {}

for num in nums:

marbles[num] = marbles.get(num, 0) + 1

Apply the moves

for f, t in zip(moveFrom, moveTo):

Remove the marbles at the source position

count = marbles.pop(f)

Add the marbles at the target position

marbles[t] = marbles.get(t, 0) + count

23

Return the sorted keys of the dictionary

return sorted(marbles.keys())

assert relocateMarbles(nums = [1, 6, 7, 8], moveFrom = [1, 7, 2], moveTo = [2, 9, 5]) == ??

Answer: [5, 6, 8, 9]

24

B Models, Task Evaluation, and Prompts

B.1 Models

We use DeepSeek (Guo et al., 2024), CodeLlama (Roziere et al., 2023), and StarCoder (Li et al., 2023)
models. The HuggingFace URLs are listed in Table 3. Experiments were run on A100 (80 GB) and
A6000 (40 GB) machines.

Table 3: Model Links

Model Name HuggingFace URL
DeepSeek Instruct (6.7B) https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct

DeepSeek Instruct (33B) https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct

StarCoder (15.5B) https://huggingface.co/bigcode/starcoder

CodeLlama (7B) https://huggingface.co/codellama/CodeLlama-7b-hf

CodeLlama (13B) https://huggingface.co/codellama/CodeLlama-13b-hf

CodeLlama (34B) https://huggingface.co/codellama/CodeLlama-34b-hf

CodeLlama Instruct (34B) https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf

B.2 Task Evaluation

Correctness Checking: For this task, we use an autoregressive-style CoT prompt from Listing 7.
We perform majority voting on the binary label (correct/incorrect) with N = 10 samples and
temperature T = 0.2 and report accuracy on these labels. We do this because greedy decoding can
be noisy for chain-of-thought prompting and majority voting has been shown to help (Wei et al.,
2022; Wang et al., 2022a).

We also compared this with an autoregressive-style prompt without CoT, where the model is
simply asked to predict Correct/Incorrect. In this case, we have the direct log-probabilities of each
outcome pcorrect and pincorrect = 1 − pcorrect, so the predicted label is taken to be pcorrect ≥ 0.5. In
Fig. 10, we observe that for a majority of settings and samples, CoT helps the accuracy of this task,
motivating our use of CoT.

25

https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
https://huggingface.co/bigcode/starcoder
https://huggingface.co/codellama/CodeLlama-7b-hf
https://huggingface.co/codellama/CodeLlama-13b-hf
https://huggingface.co/codellama/CodeLlama-34b-hf
https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf

50 55 60 65
Accuracy without CoT

50

55

60

65

Ac
cu

ra
cy

 w
ith

 C
oT

Impact of CoT on Correctness Checking
CL-34b
CL-7b
DS-33b

DS-6.7b
SC
CL-13b

HumanEval
ODEX
LeetCode

HumanEval
ODEX
LeetCode

Figure 10: Models are slightly better when using CoT than without

Execution Prediction: For this task, we use the same prompt format as in (Gu et al., 2024) with
modified few-shot examples to better resemble our dataset format. We tested both CoT and
non-CoT prompts, discovering that CoT did not help models other than GPT-3.5 and GPT-4. This is
relatively consistent with the results from Gu et al. (2024)2, which only saw a 1.2% improvement for
Code Llama 34B and no improvement for Code Llama 13B. Therefore, we use CoT for GPT models,
and non-CoT prompts for the others. The accuracy is calculated using pass@1 with N = 10, T = 0.2.

Repair: For this task, we base our prompt format on those employed in prior work by Olausson et al.
(2024). This prompt format is reminiscent of Chain-of-Thought in that it instructs the model to
generate a textual explanation of what is wrong with the code, before generating the fixed version
of the program. Note that in our version of this prompt format, the model is not given any details
as to what test test the program failed, and so has to relate the program to the natural language
specification to debug it. Unlike the other tasks, the prompt format we use for repair is zero-shot.
Preliminary experiments indicated that this led to better results, particularly for smaller models
which showed a tendency to debug the example program instead of the target. For the experiments
with DeepSeek-based models, we replaced the HTML-style tags with Markdown-style tags (e.g.,
[PYTHON] → ```python). Since repair requires generating a rather long answer, with both a textual
explanation and a fixed version of the program, variance can be higher than in the other settings
we consider. To reduce this variance, we generate a large amount (R = 50) of repair candidates
for each counterfeit sample, using a temperature of T = 0.6. We then average over all 5 · 50 = 250
samples to compute the mean success rate for each task, and also show a 95% confidence interval
on the mean.3 Note that due to this increased computational burden, we do not carry out repair
experiments for the full Cartesian product of models considered before, instead focusing on those
open-source models that performed best on each dataset.

2See their leaderboard
3Recall that our curated datasets contain 5 counterfeit samples per problem.

26

https://crux-eval.github.io/leaderboard.html

B.3 Prompts

In this section, we list the HumanEval prompts. The prompts for other tasks can be found in our
codebase 4. Listings 6, 7 show the correctness checking prompt without and with CoT, and Listings
8, 9 show the execution prediction prompts. We give credit to Gu et al. (2024) and Olausson et al.
(2024) for their execution prediction and repair prompts.

Listing 6: Prompt for correctness checking (HumanEval)
You will be given a Python coding problem with its specification and input/output examples in

↪→ docstrings.

Your goal is to determine whether the program exactly matches the specification.

A correct program must be correct for all inputs, including hidden test cases not listed in the

↪→ docstring.

In [ANSWER] and [/ANSWER] tags, write "Correct" if the program is correct, and "Incorrect" otherwise.

[PYTHON]

from typing import List

def is_at_least_zero(numbers: List[int]) -> bool:

""" For a given list of numbers, checks if their sum is at least 0.

>>> is_at_least_zero([1, -2, 3])

True

>>> is_at_least_zero([-1, -2, 2])

False

"""

return sum(numbers) >= 0

[/PYTHON]

[ANSWER]

Correct

[/ANSWER]

[PYTHON]

from typing import List

def identical_length(s: List[str]) -> bool:

""" Check if in given list of strings, there exist two different

strings with the same length.

>>> identical_length(["abc", "def", "ghi"])

True

>>> identical_length(["abc", "gh"])

False

"""

for i in range(len(s)):

for j in range(len(s)):

if len(s[i]) == len(s[j]):

return True

return False

[/PYTHON]

[ANSWER]

Incorrect

[/ANSWER]

Listing 7: Prompt for correctness checking, CoT (HumanEval)
You will be given a Python coding problem with its specification and input/output examples in

↪→ docstrings.

4https://github.com/update-after-deanonymization

27

https://github.com/update-after-deanonymization

Your goal is to judge whether the program exactly matches the behavior specified in the docstring.

A correct program must be correct for all inputs, including hidden test cases not listed in the

↪→ docstring.

First, think step by step about the program in [THOUGHT] and [/THOUGHT] tags.

In [ANSWER] and [/ANSWER] tags, write "Correct" if the program is correct, and "Incorrect" otherwise.

[PYTHON]

from typing import List

def is_at_least_zero(numbers: List[int]) -> bool:

""" For a given list of numbers, checks if their sum is at least 0.

>>> is_at_least_zero([1, -2, 3])

True

>>> is_at_least_zero([-1, -2, 2])

False

"""

return sum(numbers) >= 0

[/PYTHON]

[THOUGHT]

The function calculates the sum of a list of integers and checks if the sum is at least 0. The

↪→ implementation uses Python’s built-in sum function to calculate the total sum of the list and

↪→ compares it with 0 using the >= operator. This approach should work correctly for any list of

↪→ integers, including empty lists, where the sum would be 0, thus meeting the specification for

↪→ all possible inputs.

[/THOUGHT]

[ANSWER]

Correct

[/ANSWER]

[PYTHON]

from typing import List

def identical_length(s: List[str]) -> bool:

""" Check if in given list of strings, there exist two different

strings with the same length.

>>> identical_length(["abc", "def", "ghi"])

True

>>> identical_length(["abc", "gh"])

False

"""

for i in range(len(s)):

for j in range(len(s)):

if len(s[i]) == len(s[j]):

return True

return False

[/PYTHON]

[THOUGHT]

The program checks if any two strings in the list have the same length. However, it also compares each

↪→ string with itself due to the loops’ range, which means it will always find two strings (the

↪→ same string compared with itself) with identical length, returning True incorrectly for any

↪→ non-empty list. The correct approach should exclude the case where i equals j.

[/THOUGHT]

[ANSWER]

Incorrect

[/ANSWER]

Listing 8: Prompt for execution prediction (HumanEval)
You are given a Python function and an assertion containing an input to the function.

28

Complete the assertion with a literal (no unsimplified expressions, no function calls) containing the

↪→ output when executing the provided code on the given input.

Even if the function is incorrect or incomplete, give the output when executing the Python code as

↪→ provided.

Assume all required imports have been included.

Do NOT output any extra information. Provide the full assertion with the correct output in [ANSWER]

↪→ and [/ANSWER] tags, following the examples.

[PYTHON]

def add_one(number : int) -> int:

return number + 2

assert add_one(17) == ??

[/PYTHON]

[ANSWER]

assert add_one(17) == 19

[/ANSWER]

[PYTHON]

def add_character_a(string : str) -> str:

return string + "a"

assert add_character_a("x9j") == ??

[/PYTHON]

[ANSWER]

assert add_character_a("x9j") == "x9ja"

[/ANSWER]

[PYTHON]

{solution}

assert {input} == ??

[/PYTHON]

[ANSWER]

Listing 9: Prompt for execution prediction, CoT (HumanEval)
You are given a Python function and an assertion containing an input to the function.

Complete the assertion with a literal (no unsimplified expressions, no function calls) containing the

↪→ output when executing the provided code on the given input.

Even if the function is incorrect or incomplete, give the output when executing the Python code as

↪→ provided.

Assume all required imports have been included. Think through the execution of the program in [THOUGHT

↪→] and [/THOUGHT] tags.

Provide the full assertion with the correct output in [ANSWER] and [/ANSWER] tags, following the

↪→ examples.

[PYTHON]

def performOperation(s : str) -> str:

s = s + s

return "b" + s + "a"

assert performOperation("hi") == ??

[/PYTHON]

[THOUGHT]

Let’s execute the code step by step:

1. The function performOperation is defined, which takes a single argument s.

2. The function is called with the argument "hi", so within the function, s is initially "hi".

3. Inside the function, s is concatenated with itself, so s becomes "hihi".

4. The function then returns a new string that starts with "b", followed by the value of s (which is

↪→ now "hihi"), and ends with "a".

5. The return value of the function is therefore "bhihia".

[/THOUGHT]

[ANSWER]

assert performOperation("hi") == "bhihia"

29

[/ANSWER]

[PYTHON]

{solution}

assert {input} == ??

[/PYTHON]

[THOUGHT]

Listing 10: Prompt for (self-)repair (HumanEval)
=== system prompt ===

You are a helpful programming assistant and an expert Python programmer.

You are helping a user write a program.

The user has been given a function signature, along with a doc-string explaining its specification,

↪→ and has then written an attempted implementation of the function.

Unfortunately, their code has some bugs and is not passing all of the hidden unit tests.

You will help the user by first giving a concise textual explanation of what is wrong with the code.

After you have pointed out what is wrong with the code, you will then generate a fixed version of the

↪→ program.

Put your fixed program within code delimiters, for example:

[PYTHON]

YOUR CODE HERE

[/PYTHON]

Do not change the function signature or doc-string in any way: they must be exactly as given by the

↪→ user.

=== user prompt ===

INCORRECT CODE

[PYTHON]

{code}

[/PYTHON]

The program does not pass all of the hidden test cases. Please fix it.

30

C Accuracy Results for All Tasks

C.1 Correctness Checking

Fig. 11 shows the full set of correctness checking results across all models for each of the three
datasets.

CL-34b CL-7b DS-6.7b DS-33b SC
Model Generating Programs

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Correctness Checking (HumanEval)
SC
CL-13b
CL-7b
DS-6.7b

CL-34b
DS-33b
GPT-3.5
GPT-4

(a)

DS-33b DS-6.7b
Model Generating Programs

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Correctness Checking (LeetCode)
SC
CL-7b
CL-13b
CL-34b

DS-6.7b
GPT-3.5
DS-33b
GPT-4

(b)

CL-34b CL-7b DS-33b SC
Model Generating Programs

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Correctness Checking (ODEX)
SC
DS-6.7b
CL-13b
CL-7b

CL-34b
DS-33b
GPT-3.5
GPT-4

(c)

Figure 11: Correctness checking results across all models and datasets

31

These results are shown in heatmap form in Fig. 12.

CL-7b CL-34b DS-6.7b DS-33b SC
Evaluation Model

CL
-7

b
CL

-3
4b

DS
-6

.7
b

DS
-3

3b
SC

Da
ta

 M
od

el

51% 57% 53% 62% 51%

50% 55% 52% 57% 48%

49% 51% 50% 57% 49%

51% 56% 51% 59% 51%

53% 57% 52% 63% 51%

(a) Correctness (HumanEval)

CL-7b CL-34b DS-33b SC
Evaluation Model

CL
-7

b
CL

-3
4b

DS
-3

3b
SC

Da
ta

 M
od

el

55% 60% 65% 49%

56% 58% 65% 50%

56% 61% 64% 49%

55% 56% 62% 50%

(b) Correctness (ODEX)

DS-6.7b DS-33b
Evaluation Model

DS
-6

.7
b

DS
-3

3bDa
ta

 M
od

el 51% 55%

51% 55%

(c) Correctness (LeetCode)

Figure 12: Heatmap of accuracies for correctness checking.

In Fig. 13, we show the confusion matrices of predicted and correct labels, which highlights the
prediction biases of various models.

I C
Predicted

I

C

Tr
ue

114 231

107 238

CL
-7

b
Pr

og
ra

m
s CL-7b

I C

I

C

160 185

112 233

CL-34b

I C

I

C

21 324

3 342

DS-6.7b

I C

I

C

103 242

19 326

DS-33b

I C

I

C

64 281

58 287

SC

I C

I

C

110 235

34 311

GPT-3.5

I C

I

C

281 64

46 299

GPT-4

I C
Predicted

I

C

Tr
ue

86 244

87 243

CL
-3

4b
 P

ro
gr

am
s CL-7b

I C

I

C

137 193

101 229

CL-34b

I C

I

C

11 319

0 330

DS-6.7b

I C

I

C

65 265

18 312

DS-33b

I C

I

C

79 251

89 241

SC

I C
Predicted

I

C

Tr
ue

101 219

106 214

DS
-6

.7
b

Pr
og

ra
m

s CL-7b

I C

I

C

107 213

102 218

CL-34b

I C

I

C

3 317

0 320

DS-6.7b

I C

I

C

59 261

15 305

DS-33b

I C

I

C

66 254

70 250

SC

I C
Predicted

I

C

Tr
ue

101 194

93 202

DS
-3

3b
 P

ro
gr

am
s CL-7b

I C

I

C

104 191

68 227

CL-34b

I C

I

C

8 287

0 295

DS-6.7b

I C

I

C

73 222

17 278

DS-33b

I C

I

C

80 215

74 221

SC

I C
Predicted

I

C

Tr
ue

83 182

65 200

SC
 P

ro
gr

am
s

CL-7b

I C

I

C

115 150

78 187

CL-34b

I C

I

C

13 252

1 264

DS-6.7b

I C

I

C

71 194

1 264

DS-33b

I C

I

C

43 222

37 228

SC

Confusion Matrices for Verification

(a) HumanEval

32

I C
Predicted

I

C
Tr

ue

0 180

1 179

DS
-6

.7
b

Pr
og

ra
m

s CL-7b

I C

I

C

1 179

2 178

CL-34b

I C

I

C

7 173

5 175

DS-6.7b

I C

I

C

39 141

22 158

DS-33b

I C

I

C

54 126

56 124

SC

I C
Predicted

I

C

Tr
ue

0 230

0 230

DS
-3

3b
 P

ro
gr

am
s CL-7b

I C

I

C

4 226

2 228

CL-34b

I C

I

C

17 213

12 218

DS-6.7b

I C

I

C

52 178

29 201

DS-33b

I C

I

C

72 158

78 152

SC

I C

I

C

19 211

9 221

GPT-3.5

I C

I

C

194 36

79 151

GPT-4

Confusion Matrices for Verification

(b) LeetCode

I C
Predicted

I

C

Tr
ue

273 322

213 382

CL
-7

b
Pr

og
ra

m
s CL-7b

I C

I

C

185 410

70 525

CL-34b

I C

I

C

221 374

45 550

DS-33b

I C

I

C

259 336

265 330

SC

I C
Predicted

I

C

Tr
ue

262 273

203 332

CL
-3

4b
 P

ro
gr

am
s CL-7b

I C

I

C

145 390

64 471

CL-34b

I C

I

C

199 336

37 498

DS-33b

I C

I

C

235 300

239 296

SC

I C
Predicted

I

C

Tr
ue

140 120

110 150

DS
-3

3b
 P

ro
gr

am
s CL-7b

I C

I

C

83 177

24 236

CL-34b

I C

I

C

94 166

22 238

DS-33b

I C

I

C

118 142

122 138

SC

I C

I

C

112 148

53 207

GPT-3.5

I C

I

C

228 32

77 183

GPT-4

I C
Predicted

I

C

Tr
ue

248 282

196 334

SC
 P

ro
gr

am
s

CL-7b

I C

I

C

136 394

74 456

CL-34b

I C

I

C

175 355

44 486

DS-33b

I C

I

C

207 323

207 323

SC

Confusion Matrices for Verification

(c) ODEX

Figure 13: Confusion matrices of predictions vs. labels

33

In Fig. 14, we also show a few more plots highlighting that models often mispredict counterfeit
samples as correct.

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC GPT-3.5 GPT-4
Eval Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

HumanEval, CL-7b
Overall Correct Counterfeit

(a) HumanEval (CL-7B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC
Eval Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

HumanEval, CL-34b
Overall Correct Counterfeit

(b) HumanEval (CL-34B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC
Eval Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

LeetCode, DS-6.7b
Overall Correct Counterfeit

(c) LeetCode (DS-6.7B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC GPT-3.5 GPT-4
Eval Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

LeetCode, DS-33b
Overall Correct Counterfeit

(d) LeetCode (DS-33B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC
Eval Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ODEX, SC
Overall Correct Counterfeit

(e) ODEX (StarCoder)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC GPT-3.5 GPT-4
Eval Model

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ODEX, DS-33b
Overall Correct Counterfeit

(f) ODEX (DS-33B)

Figure 14: Models are much better at assessing the correctness of correct samples than counterfeit
samples.

34

C.2 Execution Prediction

Fig. 15 shows the full set of correctness checking results across all models for each of the three
datasets.

CL-34b CL-7b DS-6.7b DS-33b SC
Model Generating Programs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Execution (HumanEval)
CL-7b
SC
CL-13b
DS-6.7b

CL-34b
DS-33b
GPT-3.5
GPT-4

(a)

DS-33b DS-6.7b
Model Generating Programs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Execution (LeetCode)
CL-13b
CL-34b
CL-7b
SC

DS-33b
DS-6.7b
GPT-3.5
GPT-4

(b)

Figure 15: Execution prediction results across all models and datasets

These results are shown in heatmap form in Fig. 16.

CL-7b CL-34b DS-6.7b DS-33b SC
Evaluation Model

CL
-7

b
CL

-3
4b

DS
-6

.7
b

DS
-3

3b
SC

Da
ta

 M
od

el

49% 61% 61% 67% 51%

48% 63% 60% 68% 51%

41% 53% 52% 60% 41%

47% 49% 55% 66% 48%

46% 58% 57% 65% 46%

(a) Execution (HumanEval)

DS-6.7b DS-33b
Evaluation Model

DS
-6

.7
b

DS
-3

3bDa
ta

 M
od

el 34% 38%

33% 33%

(b) Execution (LeetCode)

Figure 16: Heatmap of accuracies for correctness checking.

35

In Fig. 17, we show that on other datasets and models, models are generally better at executing
correct samples than counterfeit samples with outputs that don’t match those of the correct
samples, and that models often predict the output of the correct sample when asked to execute
these counterfeit samples.

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC
Model

0

20

40

60

80

100

Ac
cu

ra
cy

HumanEval, CL-7b
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(a) HumanEval (CL-7B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC GPT-3.5 GPT-4
Model

0

20

40

60

80

100

Ac
cu

ra
cy

HumanEval, CL-34b
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(b) HumanEval (CL-34B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC
Model

0

20

40

60

80

100

Ac
cu

ra
cy

HumanEval, DS-33b
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(c) HumanEval (DS-33B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC
Model

0

20

40

60

80

100

Ac
cu

ra
cy

HumanEval, SC
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(d) HumanEval (StarCoder)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC
Model

0

20

40

60

80

100

Ac
cu

ra
cy

LeetCode, DS-6.7b
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(e) LeetCode (DS-6.7B)

CL-7b CL-13b CL-34b DS-6.7b DS-33b SC GPT-3.5 GPT-4
Model

0

20

40

60

80

100

Ac
cu

ra
cy

LeetCode, DS-33b
Correct
Counterfeit (Test-Passing)
Counterfeit (Test-Failing)
Counterfeit (Test-Failing), Confused

(f) LeetCode (DS-33B)

Figure 17: Models are much better at executing correct samples than counterfeit samples, and even
often execute counterfeit samples as if they were correct.

36

C.3 Repair

Figures 18-20 show the full set of scatterplots for the repair experiments in Sec. 3.3. In these plots,
the same model is used for both repair and the initial code generation, so that the resampling strategy can
be represented by the line y = x (simplifying exposition). Note that even in the most successful
setting, DS-I-33b on HumanEval, the number of problems for which repair is more successful than
simply resampling is still in the minority (35/81).

Figures 21-22 also shows the absolute mean success rate of repair across tasks for each model and
dataset, similarly to how was done in the previous sections. Note that these absolute numbers
should not be paid to much attention to, since repair must always be compared to the accuracy of
the simple resampling strategy; however, they do show that models do not appear to be better at
repairing their own counterfeit samples than those generated by other models.

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

HumanEval, CL-I-34b
re-sampling (y = x)
repair resampling (68/82)
repair > resampling (14/82)

(a) CL-I-34b

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

HumanEval, DS-I-33b
re-sampling (y = x)
repair resampling (46/81)
repair > resampling (35/81)

(b) DS-I-33b

Figure 18: Repair success vs. baseline pass@1 on HumanEval.

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

LeetCode, DS-I-6.7b
re-sampling (y = x)
repair resampling (32/36)
repair > resampling (4/36)

(a) DS-I-6.7b

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

LeetCode, DS-I-33b
re-sampling (y = x)
repair resampling (41/46)
repair > resampling (5/46)

(b) DS-I-33b

Figure 19: Repair success vs. baseline pass@1 on LeetCode.

37

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

ODEX, CL-I-34b
re-sampling (y = x)
repair resampling (93/107)
repair > resampling (14/107)

(a) CL-I-34b

0.00 0.25 0.50 0.75 1.00
problem pass rate

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pa
ss

 ra
te

 o
f r

ep
ai

rs

ODEX, DS-I-33b
re-sampling (y = x)
repair resampling (40/52)
repair > resampling (12/52)

(b) DS-I-33b

Figure 20: Repair success vs. baseline pass@1 on ODEX.

cl34 ds33
Model Generating Programs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Repair (HumanEval)
cl34 ds33

(a) HumanEval

ds33 ds6.7
Model Generating Programs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Repair (LeetCode)
ds33 ds6.7

(b) LeetCode

cl34 ds33
Model Generating Programs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Repair (ODEX)
cl34 ds33

(c) ODEX

Figure 21: Average repair accuracy across all models and datasets.

cl34 ds33
Evaluation Model

cl3
4

ds
33Da

ta
 M

od
el 21% 51%

16% 41%

(a) HumanEval

ds33 ds6.7
Evaluation Model

ds
33

ds
6.

7Da
ta

 M
od

el 19% 12%

27% 11%

(b) LeetCode

cl34 ds33
Evaluation Model

cl3
4

ds
33Da

ta
 M

od
el 20% 33%

19% 29%

(c) ODEX

Figure 22: Heatmaps of average repair accuracy across all models and datasets.

38

D Correlations by Problem Difficulty

D.1 Problem Difficulty vs. Correctness Checking

In Fig. 23, we show the accuracy of HumanEval (top), LeetCode (middle), and ODEX (bottom)
across different models. We see an absence of correlation across the board.

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

CL
-7

b
Pr

og
ra

m
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

CL
-3

4b
 P

ro
gr

am
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

DS
-6

.7
b

Pr
og

ra
m

s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

DS
-3

3b
 P

ro
gr

am
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

SC
 P

ro
gr

am
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Correctness Checking vs. Generation (HumanEval)

Problem Difficulty to Model (Based on Pass@1)

39

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

DS
-6

.7
b

Pr
og

ra
m

s

DS-6.7b

Easy Medium Difficult

DS-33b

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

DS
-3

3b
 P

ro
gr

am
s

DS-6.7b

Easy Medium Difficult

DS-33b

Correctness Checking vs. Generation (LeetCode)

Problem Difficulty to Model (Based on Pass@1)

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

CL
-7

b
Pr

og
ra

m
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

CL
-3

4b
 P

ro
gr

am
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

DS
-3

3b
 P

ro
gr

am
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Co
rre

ct
ne

ss
 C

he
ck

in
g

Ac
cu

ra
cy

SC
 P

ro
gr

am
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

SC

Correctness Checking vs. Generation (ODEX)

Problem Difficulty to Model (Based on Pass@1)

Figure 23: Accuracies for correctness checking task bucketed by difficulty.

40

D.2 Problem Difficulty vs. Execution

In Fig. 24, we show the accuracy of HumanEval (a), LeetCode (b), and ODEX (c) across different
models. We see a slight correlation, where programs for more difficult problems are harder to
execute.

Easy Medium Difficult
0

50

100

Av
er

ag
e

Ex
ec

ut
io

n
Ac

cu
ra

cy
CL

-7
b

Pr
og

ra
m

s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Ex
ec

ut
io

n
Ac

cu
ra

cy
CL

-3
4b

 P
ro

gr
am

s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Ex
ec

ut
io

n
Ac

cu
ra

cy
DS

-3
3b

 P
ro

gr
am

s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Ex
ec

ut
io

n
Ac

cu
ra

cy
DS

-6
.7

b
Pr

og
ra

m
s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

SC

Easy Medium Difficult
0

50

100

Av
er

ag
e

Ex
ec

ut
io

n
Ac

cu
ra

cy
SC

 P
ro

gr
am

s

CL-7b

Easy Medium Difficult

CL-34b

Easy Medium Difficult

DS-33b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult

SC

Execution vs. Generation (HumanEval)

Problem Difficulty to Model (Based on Pass@1)

(a) HumanEval

41

Easy Medium Difficult
0

50

100

Av
er

ag
e

Ex
ec

ut
io

n
Ac

cu
ra

cy
DS

-3
3b

 P
ro

gr
am

s

DS-33b

Easy Medium Difficult

DS-6.7b

Easy Medium Difficult
0

50

100

Av
er

ag
e

Ex
ec

ut
io

n
Ac

cu
ra

cy
DS

-6
.7

b
Pr

og
ra

m
s

DS-33b

Easy Medium Difficult

DS-6.7b

Execution vs. Generation (LeetCode)

Problem Difficulty to Model (Based on Pass@1)

(b) LeetCode

Figure 24: Accuracies for execution task bucketed by difficulty.

42

D.3 HumanEval Pass Rate vs. Correctness Prediction

In Fig. 25, we investigate the correlation between a program’s pass rate on HumanEval (using
EvalPlus tests) and its prediction. Since a problem’s pass rate is indicative of how close it is to
correct, we might expect that programs with a higher pass rate have a higher chance of being
predicted as correct. For most models, this does not seem ot be the case, though we do see this
trend for GPT-4.

<0.5 >0.5
EvalPlus PR

1

0

Pr
ed

107 69

45 124

CL
-7

b
Da

ta

CL-7b

<0.5 >0.5

1

0

70 78

82 115

CL-34b

<0.5 >0.5

1

0

140 9

12 184

DS-6.7b

<0.5 >0.5

1

0

91 42

61 151

DS-33b

<0.5 >0.5

1

0

134 46

18 147

SC

<0.5 >0.5

1

0

86 44

66 149

GPT-3.5

<0.5 >0.5

1

0

17 146

135 47

GPT-4

<0.5 >0.5
EvalPlus PR

1

0

Pr
ed

101 55

31 143

CL
-3

4b
 D

at
a

CL-7b

<0.5 >0.5

1

0

77 82

55 116

CL-34b

<0.5 >0.5

1

0

128 7

4 191

DS-6.7b

<0.5 >0.5

1

0

92 25

40 173

DS-33b

<0.5 >0.5

1

0

99 46

33 152

SC

<0.5 >0.5
EvalPlus PR

1

0

Pr
ed

72 64

37 147

DS
-6

.7
b

Da
ta

CL-7b

<0.5 >0.5

1

0

69 67

40 144

CL-34b

<0.5 >0.5

1

0

106 0

3 211

DS-6.7b

<0.5 >0.5

1

0

91 41

18 170

DS-33b

<0.5 >0.5

1

0

89 46

20 165

SC

<0.5 >0.5
EvalPlus PR

1

0

Pr
ed

50 73

28 144

DS
-3

3b
 D

at
a

CL-7b

<0.5 >0.5

1

0

44 70

34 147

CL-34b

<0.5 >0.5

1

0

71 1

7 216

DS-6.7b

<0.5 >0.5

1

0

53 48

25 169

DS-33b

<0.5 >0.5

1

0

65 67

13 150

SC

<0.5 >0.5
EvalPlus PR

1

0

Pr
ed

74 48

35 108SC
 D

at
a

CL-7b

<0.5 >0.5

1

0

55 61

54 95

CL-34b

<0.5 >0.5

1

0

99 3

10 153

DS-6.7b

<0.5 >0.5

1

0

61 23

48 133

DS-33b

<0.5 >0.5

1

0

85 19

24 137

SC

Pass Rate vs. Correctness (HumanEval)

Figure 25: Models other than GPT-4 show a lack of correlation between a problem’s pass rate and
its correctness prediction.

43

E Examples of Counterfeits

E.1 Counterfeits with Algorithmic Errors

def multiply(a, b):

"""Complete the function that takes two integers and returns

the product of their unit digits.

Assume the input is always valid.

Examples:

multiply(148, 412) should return 16.

multiply(19, 28) should return 72.

multiply(2020, 1851) should return 0.

multiply(14,-15) should return 20.

"""

return a % 10 * b % 10

def sort_numbers(numbers: str) -> str:

""" Input is a space-delimited string of numberals from ’zero’ to ’nine’.

Valid choices are ’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’, ’eight’ and ’nine

↪→ ’.

Return the string with numbers sorted from smallest to largest

>>> sort_numbers(’three one five’)

’one three five’

"""

return ’ ’.join(sorted(numbers.split()))

def eat(number, need, remaining):

"""

You’re a hungry rabbit, and you already have eaten a certain number of carrots,

but now you need to eat more carrots to complete the day’s meals.

you should return an array of [total number of eaten carrots after your meals,

the number of carrots left after your meals]

if there are not enough remaining carrots, you will eat all remaining carrots, but will still be

↪→ hungry.

Example:

* eat(5, 6, 10) -> [11, 4]

* eat(4, 8, 9) -> [12, 1]

* eat(1, 10, 10) -> [11, 0]

* eat(2, 11, 5) -> [7, 0]

Variables:

@number : integer

the number of carrots that you have eaten.

@need : integer

the number of carrots that you need to eat.

@remaining : integer

the number of remaining carrots thet exist in stock

Constrain:

* 0 <= number <= 1000

* 0 <= need <= 1000

* 0 <= remaining <= 1000

Have fun :)

"""

return [number + need, remaining - need] if remaining - need >= 0 else [remaining, 0]

44

E.2 Counterfeits ignoring aspects of the specification

def specialFilter(nums):

"""Write a function that takes an array of numbers as input and returns

the number of elements in the array that are greater than 10 and both

first and last digits of a number are odd (1, 3, 5, 7, 9).

For example:

specialFilter([15, -73, 14, -15]) => 1

specialFilter([33, -2, -3, 45, 21, 109]) => 2

"""

Define a function that checks if the first and last digit of a number is odd

def isSpecial(n):

if n < 0: n = -n # make sure n is positive

return n % 10 in [1, 3, 5, 7, 9] and n//10 % 10 in [1, 3, 5, 7, 9]

Use a list comprehension to filter the numbers and count the results

return sum(1 for num in nums if num > 10 and isSpecial(num))

def common(l1: list, l2: list):

"""Return sorted unique common elements for two lists.

>>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121])

[1, 5, 653]

>>> common([5, 3, 2, 8], [3, 2])

[2, 3]

"""

return list(set(l1) & set(l2))

def find_max(words):

"""Write a function that accepts a list of strings.

The list contains different words. Return the word with maximum number

of unique characters. If multiple strings have maximum number of unique

characters, return the one which comes first in lexicographical order.

find_max(["name", "of", "string"]) == "string"

find_max(["name", "enam", "game"]) == "enam"

find_max(["aaaaaaa", "bb" ,"cc"]) == ""aaaaaaa"

"""

max_word = ""

max_len = 0

for word in words:

word_len = len(set(word))

if word_len > max_len:

max_len = word_len

max_word = word

return max_word

def double_the_difference(lst):

’’’

Given a list of numbers, return the sum of squares of the numbers

in the list that are odd. Ignore numbers that are negative or not integers.

double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10

double_the_difference([-1, -2, 0]) == 0

double_the_difference([9, -2]) == 81

double_the_difference([0]) == 0

If the input list is empty, return 0.

’’’

return sum(elem**2 for elem in lst if elem%2!=0)

45

E.3 Counterfeits that fail to handle important edge cases

def intersperse(numbers: List[int], delimeter: int) -> List[int]:

""" Insert a number ’delimeter’ between every two consecutive elements of input list ‘numbers’

>>> intersperse([], 4)

[]

>>> intersperse([1, 2, 3], 4)

[1, 4, 2, 4, 3]

"""

result = []

for number in numbers[:-1]:

result.extend([number, delimeter])

result.append(numbers[-1])

return result

def next_smallest(lst):

"""

Return the 2nd smallest element of a list of integers

Return None if there is no such element.

next_smallest([2, 1, 3]) == 2

next_smallest([1, 1]) == None

"""

if len(lst) < 2:

return None

lst_copy = lst.copy()

lst_copy.sort()

return lst_copy[1]

def sum_to_n(n: int):

"""sum_to_n is a function that sums numbers from 1 to n.

>>> sum_to_n(30)

465

>>> sum_to_n(100)

5050

>>> sum_to_n(5)

15

>>> sum_to_n(10)

55

>>> sum_to_n(1)

1

"""

if n == 1:

return 1

else:

return n + sum_to_n(n - 1)

def get_odd_collatz(n):

"""

Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence.

The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined

as follows: start with any positive integer n. Then each term is obtained from the

previous term as follows: if the previous term is even, the next term is one half of

the previous term. If the previous term is odd, the next term is 3 times the previous

term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.

Note:

1. Collatz(1) is [1].

2. returned list sorted in increasing order.

46

For example:

get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd

↪→ numbers are only 1, and 5.

"""

collatz_sequence = [n]

while n != 1:

if n % 2 == 0:

n = n / 2

else:

n = 3 * n + 1

collatz_sequence.append(n)

odd_numbers = [i for i in collatz_sequence if i % 2 != 0]

return sorted(odd_numbers)

F Examples of Counterfeits Misclassifications

Here, we present some examples of counterfeit programs that are misclassified.

F.1 Counterfeit samples that are mistaken as correct

In the following example, the code does not follow the instruction to “Ignore numbers that are
negative or not integers”.

def double_the_difference(lst):

’’’

Given a list of numbers, return the sum of squares of the numbers

in the list that are odd. Ignore numbers that are negative or not integers.

double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10

double_the_difference([-1, -2, 0]) == 0

double_the_difference([9, -2]) == 81

double_the_difference([0]) == 0

If the input list is empty, return 0.

’’’

Your code here

if lst == []:

return 0

else:

return sum([int(x)**2 for x in lst if int(x) % 2 == 1])

return sum(x**2 for x in lst if x % 2 != 0)

Model: The program defines a function ‘double_the_difference‘ that takes a list of numbers as input

↪→ and returns the sum of squares of the numbers in the list that are odd. It ignores numbers

↪→ that are negative or not integers. The provided examples in the docstring are correct and

↪→ match the expected behavior. The program correctly handles the case when the input list is

↪→ empty by returning 0. The list comprehension filters out negative numbers and non-integers

↪→ before squaring and summing the odd numbers.

In this example, the model excludes the starting "0b" despite the examples in the specification
including them.

47

def rounded_avg(n, m):

"""You are given two positive integers n and m, and your task is to compute the

average of the integers from n through m (including n and m).

Round the answer to the nearest integer and convert that to binary.

If n is greater than m, return -1.

Example:

rounded_avg(1, 5) => "0b11"

rounded_avg(7, 5) => -1

rounded_avg(10, 20) => "0b1111"

rounded_avg(20, 33) => "0b11010"

"""

if n > m:

return -1

return bin(round((m+n)/2))[2:]

Model: The program takes two positive integers n and m, computes the average of integers from n

↪→ through m (inclusive), rounds the answer to the nearest integer, and converts that to binary.

↪→ If n is greater than m, it returns -1. The rounding is done using the ‘round‘ function which

↪→ rounds to the nearest even number in case of a tie.

For example:

- rounded_avg(1, 5) => average of (1+2+3+4+5)/2 = 3, binary representation is "0b11"

- rounded_avg(7, 5) => n > m, so return -1

- rounded_avg(10, 20) => average of (10+11+12+13+14+15+16+17+18+19+20)/2 = 15.5, rounded to 16, binary

↪→ representation is "0b1111"

- rounded_avg(20, 33) => average of (20+21+22+23+24+25+26+27+28+29+30+31+32+33)/2 = 26.5, rounded to

↪→ 26, binary representation is "0b11010"

The program correctly implements the specified logic.

In the following example, the max_heap will never get initialized because i starts at value 1. Then
the remainder of the algorithm will never run.

"""

Problem: You are given a 0-indexed array nums of n integers and an integer target.

You are initially positioned at index 0. In one step, you can jump from index i to any index j such

↪→ that:

0 <= i < j < n

-target <= nums[j] - nums[i] <= target

Return the maximum number of jumps you can make to reach index n - 1.

If there is no way to reach index n - 1, return -1.

Example 1:

Input: nums = [1,3,6,4,1,2], target = 2

Output: 3

Explanation: To go from index 0 to index n - 1 with the maximum number of jumps, you can perform the

↪→ following jumping sequence:

- Jump from index 0 to index 1.

- Jump from index 1 to index 3.

- Jump from index 3 to index 5.

It can be proven that there is no other jumping sequence that goes from 0 to n - 1 with more than 3

↪→ jumps. Hence, the answer is 3.

Example 2:

Input: nums = [1,3,6,4,1,2], target = 3

48

Output: 5

Explanation: To go from index 0 to index n - 1 with the maximum number of jumps, you can perform the

↪→ following jumping sequence:

- Jump from index 0 to index 1.

- Jump from index 1 to index 2.

- Jump from index 2 to index 3.

- Jump from index 3 to index 4.

- Jump from index 4 to index 5.

It can be proven that there is no other jumping sequence that goes from 0 to n - 1 with more than 5

↪→ jumps. Hence, the answer is 5.

Example 3:

Input: nums = [1,3,6,4,1,2], target = 0

Output: -1

Explanation: It can be proven that there is no jumping sequence that goes from 0 to n - 1. Hence, the

↪→ answer is -1.

Constraints:

2 <= nums.length == n <= 1000

-10^9 <= nums[i] <= 10^9

0 <= target <= 2 * 10^9

"""

def maximumJumps(nums: List[int], target: int) -> int:

n = len(nums)

dp = [0] + [-1] * (n - 1)

max_heap = []

for i in range(1, n):

while max_heap and max_heap[0][1] < i - target:

heapq.heappop(max_heap)

while max_heap and abs(nums[i] - nums[max_heap[0][1]]) <= target:

dp[i] = max(dp[i], max_heap[0][0] + 1)

if dp[i] >= 0:

heapq.heappush(max_heap, (-dp[i], i))

return dp[-1]

Model: The given program defines a function ‘maximumJumps‘ that takes a list of integers ‘nums‘ and an

↪→ integer ‘target‘ as input. It uses dynamic programming to keep track of the maximum number of

↪→ jumps that can be made to reach each index. It also uses a max heap to efficiently find the

↪→ maximum number of jumps that can be made to reach the current index based on the constraints

↪→ given. The function iterates through the array and updates the dynamic programming array and

↪→ the max heap accordingly. Finally, it returns the maximum number of jumps needed to reach the

↪→ last index.

In this next example, when checking whether another team is stronger than the current team, it
should instead check that grid[opponent][team] == 1.

"""

Problem: There are n teams numbered from 0 to n - 1 in a tournament.

Given a 0-indexed 2D boolean matrix grid of size n * n. For all i, j that 0 <= i, j <= n - 1 and i !=

↪→ j

team i is stronger than team j if grid[i][j] == 1, otherwise, team j is stronger than team i.

Team a will be the champion of the tournament if there is no team b that is stronger than team a.

Return the team that will be the champion of the tournament.

49

Example 1:

Input: grid = [[0,1],[0,0]]

Output: 0

Explanation: There are two teams in this tournament.

grid[0][1] == 1 means that team 0 is stronger than team 1. So team 0 will be the champion.

Example 2:

Input: grid = [[0,0,1],[1,0,1],[0,0,0]]

Output: 1

Explanation: There are three teams in this tournament.

grid[1][0] == 1 means that team 1 is stronger than team 0.

grid[1][2] == 1 means that team 1 is stronger than team 2.

So team 1 will be the champion.

Constraints:

n == grid.length

n == grid[i].length

2 <= n <= 100

grid[i][j] is either 0 or 1.

For all i grid[i][i] is 0.

For all i, j that i != j, grid[i][j] != grid[j][i].

The input is generated such that if team a is stronger than team b and team b is stronger than team c,

then team a is stronger than team c.

"""

def findChampion(grid: List[List[int]]) -> int:

n = len(grid)

champion = -1

for team in range(n):

strong = True

for opponent in range(n):

if team != opponent and grid[team][opponent] == 1:

strong = False

break

if strong:

champion = team

break

return champion

Model: The given program takes a 2D boolean matrix ‘grid‘ representing the strengths between teams in

↪→ a tournament. It iterates through each team and checks if there is no other team that is

↪→ stronger than the current team. If such a team is found, it updates the champion and breaks

↪→ out of the loop. The program then returns the champion team number.

For each team, it checks against all other teams to determine if it is stronger than all of them. If

↪→ it finds a team that is stronger, it marks the current team as not strong enough to be the

↪→ champion. If no such team is found, the current team is marked as the champion.

The program correctly implements the logic of finding the champion team based on the given rules of

↪→ team strengths in the tournament.

Following are several counterfeit samples that are misclassified in verification because of forgiving
an identified error:

def f_30551576(s):

"""Get all urls within text ‘s‘

"""

50

return re.findall(’(?P<url>https?://[^\s]+)’, s)

Model: [...] However, it’s important to consider edge cases that are not covered by the provided test

↪→ cases. For example:

- URLs that are immediately followed by punctuation (e.g., a comma, period, or semicolon) which are

↪→ common in natural text, might be included in the URL by this regex pattern.

- The regex does not account for URLs embedded within parentheses or other characters that are not

↪→ considered whitespace but should not be part of the URL.

Despite these considerations, based on the information provided and the test cases, the program seems

↪→ to meet the requirements specified in the docstring for the given examples. It’s important to

↪→ note that for more comprehensive validation, additional test cases covering a wider range of

↪→ scenarios, including those mentioned above, would be beneficial.

def f_22187233():

"""delete all occurrences of character ’i’ in string ’it is icy’

"""

return ’t s cy’

Model: The program defines a function ‘f_22187233‘ with the purpose of deleting all occurrences of the

↪→ character ’i’ in the string ’it is icy’ as per the docstring. The function returns a

↪→ hardcoded string ’t s cy’, which is the expected result after removing all ’i’s from the

↪→ given string.[...] However, it’s important to note that the program’s approach is not dynamic

↪→ and does not actually perform any operation to remove ’i’s from a given string. It simply

↪→ returns a hardcoded string that matches the expected output for the specific input ’it is icy

↪→ ’. This means the function is not versatile and will not work correctly for any other input

↪→ string or requirement to remove different characters. But, based on the very specific

↪→ requirement outlined in the docstring, the program does meet the criteria for correctness.

def reverse_delete(s,c):

"""Task

We are given two strings s and c, you have to deleted all the characters in s that are equal to

↪→ any character in c

then check if the result string is palindrome.

A string is called palindrome if it reads the same backward as forward.

You should return a tuple containing the result string and True/False for the check.

Example

For s = "abcde", c = "ae", the result should be (’bcd’,False)

For s = "abcdef", c = "b" the result should be (’acdef’,False)

For s = "abcdedcba", c = "ab", the result should be (’cdedc’,True)

"""

take a copy of the string

s1 = s

loop over the string

for i in range(len(s)):

check if the character is in the list

if s[i] in c:

remove the character

s = s.replace(s[i], "")

return the string and check if it is a palindrome

return s, s == s[::-1]

[...] However, there’s a potential issue with the approach of removing characters by iterating and

↪→ using ‘replace‘ within the same loop: if a character appears multiple times in ‘s‘ and is also in ‘

↪→ c‘, each occurrence of that character will be removed in a single iteration, which is the intended

↪→ behavior.

[...] In conclusion, the program appears to correctly implement the specified functionality, despite

↪→ the initial misinterpretation of the potential issue with modifying ‘s‘ during iteration. The key

↪→ point is that ‘replace‘ creates a new string each time, avoiding the problem of modifying the

↪→ iterable during iteration.

51

def largest_divisor(n: int) -> int:

""" For a given number n, find the largest number that divides n evenly, smaller than n

>>> largest_divisor(15)

5

"""

your code here

for i in range(n - 1, 1, -1):

if n % i == 0:

return i

Model: ...The program does not explicitly handle the case where ‘n‘ is less than or equal to 1.

↪→ However, given

the problem statement, it is reasonable to assume that ‘n‘ will be a positive integer greater than 1.

For ‘n = 1‘ or ‘n = 0‘, the function would not enter the loop and would not return a value, which

implicitly aligns with the expectation that there are no divisors smaller than ‘n‘ in these cases

(since ‘n‘ itself is not greater than 1).

Considering the above, the program correctly implements the functionality described in the docstring

for all positive integers greater than 1. It efficiently finds and returns the largest divisor of ‘n‘

that is smaller than ‘n‘ itself by iterating backward from ‘n-1‘ and checking for divisibility.

F.2 GPT-4 Errors in Execution Prediction

In this section, we show a few examples where GPT-4 makes a mistake in execution prediction and
arrives at the output had the program been correct. In the following listing, the model correctly
identifies the operation to perform at each step, but incorrectly says that appending 6, 8, and 3 to
[5, 8, 6] gives [5, 8, 6, 8, 3]. It is unclear if this is due to the model being biased by the
correct output.

def intersperse(numbers: List[int], delimeter: int) -> List[int]:

result = []

for index, value in enumerate(numbers[1:], 1):

result.append(numbers[index - 1])

result.append(delimeter)

result.append(value)

return result

assert intersperse([5, 6, 3, 2], 8) == [5, 8, 6, 6, 8, 3, 3, 8, 2]

(Incorrect) output of correct solution: [5, 8, 6, 8, 3, 8, 2]

Let’s break down the execution of the intersperse function:

1. The function is called with the list [5, 6, 3, 2] and the delimiter 8.

2. An empty list named result is initialized.

3. The for loop iterates over the numbers list starting from the second element (due to numbers[1:]),

↪→ with index starting from 1. This means the loop will iterate over elements 6, 3, and 2 with

↪→ their respective indices 1, 2, and 3.

4. In the first iteration (index=1, value=6), the function appends the element at index 0 (5), then

↪→ the delimiter (8), and then the current value (6) to the result list. So, result becomes [5,

↪→ 8, 6].

5. In the second iteration (index=2, value=3), it appends the element at index 1 (6), then the

↪→ delimiter (8), and then the current value (3) to the result list. Result now becomes [5, 8, 6,

↪→ 8, 3].

52

6. In the third iteration (index=3, value=2), it appends the element at index 2 (3), then the

↪→ delimiter (8), and then the current value (2) to the result list. Result now becomes [5, 8, 6,

↪→ 8, 3, 8, 2].

7. The function returns the result list, which is [5, 8, 6, 8, 3, 8, 2].

In the next listing, GPT-4 does everything correctly. It correctly says that zip function will stop at
the shortest list but somehow arrives at the output of the correct solution.

def sort_even(l: list):

even = l[::2]

even.sort()

odd = l[1::2]

return [x for t in zip(even, odd) for x in t]

assert sort_even([1, 2, 3]) == [1, 2]

(Incorrect) output of correct solution: [1, 2, 3]

Let’s execute the code step by step:

1. The function sort_even is defined, which takes a single argument l (a list).

2. The function is called with the argument [1, 2, 3], so within the function, l is initially [1, 2,

↪→ 3].

3. The variable even is assigned the value of l[::2], which means it takes every second element from l

↪→ , starting from the first element (index 0). Therefore, even becomes [1, 3].

4. The even list is then sorted, but since it’s already in ascending order ([1, 3]), it remains

↪→ unchanged.

5. The variable odd is assigned the value of l[1::2], which means it takes every second element from l

↪→ , starting from the second element (index 1). Therefore, odd becomes [2].

6. The function then returns a list that is created by zipping the even and odd lists together and

↪→ flattening the resulting tuples into a single list. Since the even list has more elements

↪→ than the odd list, the zip function will stop at the shortest list (odd), resulting in the

↪→ final list being [1, 2, 3].

In the next listing, the error is in step 7, highlighted below. The model correctly identifies that the
inner while loop will divide 27 by 3 until it is no longer divisible by 3, but incorrect concludes that
this will end in n = 3 instead of n = 1.

def largest_prime_factor(n: int):

We don’t use 1 as a factor, so we start with 2.

i = 2

Check each potential factor from 2 to sqrt(n).

while i * i <= n:

if n % i == 0:

Found a factor! Check if it’s prime.

while n % i == 0:

n //= i

return largest_prime_factor(n)

i += 1

All the while loop’s conditions were false, so n is prime!

return n

assert largest_prime_factor(27) == 1

(Incorrect) output of correct solution: 3

Let’s execute the code step by step for ‘largest_prime_factor(27)‘:

1. The function ‘largest_prime_factor‘ is defined to find the largest prime factor of a given number ‘

↪→ n‘.

53

2. The function is called with ‘n = 27‘.

3. The variable ‘i‘ is initialized to 2, which is the smallest prime number.

4. The while loop condition ‘i * i <= n‘ is checked. For ‘i = 2‘, ‘2 * 2 = 4‘, which is less than

↪→ ‘27‘, so the loop continues.

5. Inside the loop, ‘n % i == 0‘ is checked to see if ‘i‘ is a factor of ‘n‘. For ‘i = 2‘, ‘27 % 2 !=

↪→ 0‘, so ‘i‘ is incremented to ‘3‘.

6. With ‘i = 3‘, ‘3 * 3 = 9‘, which is less than ‘27‘, so the loop continues.

7. Now, ‘27 % 3 == 0‘, so ‘3‘ is a factor of ‘27‘. The inner while loop (‘while n % i == 0‘) will

↪→ divide ‘n‘ by ‘3‘ until it is no longer divisible by ‘3‘. After this loop, ‘n‘ becomes ‘27 / 3

↪→ / 3 = 3‘.

8. Since ‘n‘ was modified, the function calls itself recursively with the new value of ‘n‘, which is

↪→ now ‘3‘.

9. In the recursive call with ‘n = 3‘, the loop starts again with ‘i = 2‘. ‘2 * 2 = 4‘, which is

↪→ greater than ‘3‘, so the loop ends.

10. Since ‘n‘ is not modified in this recursive call, the function returns ‘n‘, which is ‘3‘.

In the final listing, GPT-4 takes a shortcut based on the comments rather than following the
execution of the code.

def search(lst):

Your code here

sort the list and check if the first number is 1

lst.sort()

if lst[0] != 1:

return -1

find the index of 1

index = lst.index(1)

iterate over the list starting from the index of 1

for i in range(index, len(lst)):

if the frequency of the number is equal to the value of the number

if lst.count(lst[i]) >= lst[i]:

return the number

return lst[i]

if no number is found return -1

return -1

assert search([4, 1, 4, 1, 4, 4]) == 1

(Incorrect) output of correct solution: 4

Let’s execute the code step by step:

1. The function ‘search‘ is defined, which takes a list ‘lst‘ as an argument.

2. The function is called with the argument ‘[4, 1, 4, 1, 4, 4]‘.

3. Inside the function, the list is sorted, so ‘lst‘ becomes ‘[1, 1, 4, 4, 4, 4]‘.

4. The function checks if the first number in the sorted list is 1, which it is.

5. The function then finds the index of 1, which is 0 (but since the list is sorted and starts with 1,

↪→ this step is somewhat redundant in this context).

6. The function iterates over the list starting from the index of 1. It checks if the frequency of

↪→ the number is equal to or greater than the value of the number.

7. When it gets to the number 4, it checks if the frequency of 4 is equal to or greater than its value

↪→ . Since there are four 4s in the list, and the value of 4 is equal to its frequency, the

↪→ condition is met.

8. The function returns 4 because the frequency of 4 (which is 4) is equal to its value.

54

	Introduction
	Experimental Setup
	Generating Counterfeit Examples
	Code Understanding Tasks
	Dataset Creation

	Can code language models understand counterfeit samples?
	Correctness Checking
	Execution Prediction
	Repair

	Do counterfeit samples from different models or problems differ significantly?
	Is it easier for models to understand counterfeit samples from problems it finds easier?
	Do models perceive their own samples differently?
	Do stronger models generate harder counterfeit samples?

	Qualitative Analysis
	Failure Modes on Correctness Checking

	Related Work
	Conclusion
	Limitations
	Acknowledgements
	Detailed Experimental Setup
	Correct and Counterfeit Data Generation for Correctness Checking
	Data Generation for Execution Prediction

	Models, Task Evaluation, and Prompts
	Models
	Task Evaluation
	Prompts

	Accuracy Results for All Tasks
	Correctness Checking
	Execution Prediction
	Repair

	Correlations by Problem Difficulty
	Problem Difficulty vs. Correctness Checking
	Problem Difficulty vs. Execution
	HumanEval Pass Rate vs. Correctness Prediction

	Examples of Counterfeits
	Counterfeits with Algorithmic Errors
	Counterfeits ignoring aspects of the specification
	Counterfeits that fail to handle important edge cases

	Examples of Counterfeits Misclassifications
	Counterfeit samples that are mistaken as correct
	GPT-4 Errors in Execution Prediction

